

Olesya Krivospitskaya, MD April, 11 2013

HPI (Letter from the patient):

Diagnosed with Ankylosing Spondylitis and prescribed a Sulfa drug to help with my back pain in July 2010. After a month I was admitted with D.R.E.S.S. Syndrome. XXX prescribed Prednisone from September of 2011 till January of 2012. XXX prescribed Indomethacin since February 2012 adding Enbrel for a few months before switching to Humira about six months ago. Because of continued pain in both legs and a lack of progress I switched to my current rheumatologist in December 2012 who diagnosed me with a severe lack of bone density.

The last 2 years have been specially hard. I am only 38 years old and I wish to walk without a cane, avoid disability, and have a normal life. My need is not only for my health but also for the future of my wife and kids.

<u> HPI:</u>

- Bone scan in 12/2012 showed pathologic fractures in his ribs, head of the L femor, neck of the R femur, medial condyles of the femoral bone and tibia bilaterally, distal diaphysis of tibiae bilaterally
- BMD in 12/2012 showed L-spine T-score of 4.1, Z-score -4.0, total hip T-score -6.1, Z-score -5.7.

<u>HPI:</u>

- More history
 - Used to be an athlete
 - Walks with cane
 - bone scan: 12/2012,
 pathologic fractures ribs,
 head of the L femur,
 neck of the R femur,
 medial condyles of the
 femora and tibia
 bilaterally, distal
 diaphysis of tibiae
 bilaterally.

- Physical exam
 - Vitals: 127/86, HR 71, Ht
 162.6cm, Wt 64.2kg,
 BMI 24.29
 - Looks healthy but uncomfortable
 - Can't get up from chair
 - Can't get on the table un-assisted

• <u>PMH:</u>

Ankylosing spondylitis DRESS syndrome

Surgical hx:

Cholecystectomy in 09/2011

Social hx:

Former professional boxer and runner, works in car sales, married, has 3 kids (12, 11 and 9 years old). Does not smoke, drink or use any illigal drugs.

Family hx:

No history of fractures or osteoporosis in his family

Medications:

- CALCIUM 600 + D(3) BID
- indomethacin 50 mg TID as needed for pain

CHICAG(MEDICINE

What do you think is going on?

Why is his BMD so low? Steroids?

What labs would you get?

<u>Labs:</u>

140	106	12	
3.9	24	0.8	[−] \ 85

Ca 9.0 (8.4-10.2 mg/dL),

LFTs:

Total Protein 7.7 (6-8.3 g/dL)

Albumin 4.8 (3.5-6 g/dL)

Total Bilirubin 0.5 (0.1-1 mg/dL)

Alk Phos 488 (30-120 U/L)

AST 17 (8-37 U/L)

ALT 19 (8-35 U/L)

PTH 41 (15-75 pg/mL)

25-hydroxy vitamin D 27 ng/mL

1,25 vitamin D 15 (18-64 pg/mL)

Bone specific Alk Phos 162 (0-20 mcg/L)

Phos 1.4 (2.5-4.4 mg/dL)

FGF23 145 (<=180 RU/mL) from 01/11/2013

FGF23 180 (<=180 RU/mL) from 02/15/2013

 What would be a differential? What other labs could help?

Differential in this case:

Vitamin D resistance

Tumor induced osteomalacia

Hypophophatemic rickets

Fanconi syndrome

<u>Labs:</u>

Protein electrophoresis:

No monoclonal proteins detected by routine protein electrophoresis

UA (random):

Specific gravity 1.012, **pH** 6.5, LE neg, nitrate neg, protein neg, glucose trace, **blood** trace, ketones neg, bilirubin neg, **RBC** 3 to 5, WBC none, calcium <1 mg/dL, phos 63.7 mg/dL creatinine 62 mg/dL

 The pt was started on K-Phos 1000mg TID and calcitriol 0.5mcg TID

Repeat labs from 01/24/2013 showed:

Ca 8.4 (8.4-10.2 mg/dL),

Phos 1.4 -> 1.8 (2.5-4.4 mg/dL)

 K-phos was increased to 2000mg TID, continue calcitriol 0,5mcg TID

Repeat labs from 04/03/2013 showed:

Ca 8.5 (8.4-10.2 mg/dL),

Phos 1.4 -> 1.8 -> 2.0 (2.5-4.4 mg/dL)

Albumin 4.6 (3.5-5 g/dL)

His symptoms improved significantly with calcitriol and phosphate treatment

 What is a mechanism of hypophosphatemia in hypophosphatemic rickets?

How the patient should be managed?

Isakova T, Gutiérrez OM, Wolf M. A blueprint for randomized trials targeting phosphorus metabolism in chronic kidney disease. Kidney Int. 2009 Oct;76(7):705-16

Gattineni J, Baum M. Genetic disorders of phosphate regulation. Pediatr Nephrol. 2012 Sep;27(9):1477-87

Pathways of renal phosphate wasting in hereditary hypophosphatemic rickets and tumor-induced osteomalacia

Isakova T, Gutiérrez OM, Wolf M. A blueprint for randomized trials targeting phosphorus metabolism in chronic kidney disease. Kidney Int. 2009 Oct;76(7):705-16

Treatment:

 Calcitriol is administered in two doses per day (10 to 20 ng/kg per dose)

 Phosphate is administered in a dose of 1 to 4 g/day in three to four divided doses

Complications from treatment:

- Described in patients with X-linked hypophosphatemic rickets
- Hyperparathyroidism: the administration of phosphate increases the plasma phosphate concentration, which reduces the plasma calcitriol concentration (by removing the hypophosphatemic stimulus to its synthesis). This causes secondary hyperparathyroidism.
- Nephrocalcinosis: linked to intermittent episodes of hypercalcemia and hypercalciuria. These can result from an excessive calcitriol dose or from noncompliance with oral phosphate supplementation.

Ways to overcome complications:

- dose of calcitriol should be reduced when hypercalcemia or hypercalciuria are present
- nonhypercalcemic analogues of calcitriol, such as 22oxacalcitriol, may provide a similar increase in plasma phosphate without producing hypercalcemia or hypercalciuria (not analyzed in humans)
- Preliminary data suggests that adding cinacalcet to the regimen instead of calcitriol might prevent the development of hyperparathyroidism

Calcimimetics as an Adjuvant Treatment for Familial Hypophosphatemic Rickets

Uri S. Alon,* Rachel Levy-Olomucki,* Wayne V. Moore,† Jason Stubbs,‡ Shiguang Liu,‡ and L. Darryl Quarles‡

*Pediatric Nephrology, Bone and Mineral Disorders Clinic and [†]Pediatric Endocrinology, Children's Mercy Hospital, University of Missouri, Kansas City, Missouri; and [‡]the Kidney Institute, University of Kansas Medical Center, Kansas University Medical Center, Kansas City, Kansas

Design, Setting, Participants, and Measurements: Eight subjects with XLH were given a single oral dose of phosphate, followed the next day by combined treatment with phosphate and cinacalcet. Serum measurements of ionized calcium (Ca), phosphate, creatinine, intact PTH, 1,25(OH)₂D, FGF23, and tubular threshold for phosphate/glomerular filtration rate (TP/GFR) were assessed in response to short-term treatment with phosphate and cinacalcet and compared with long-term administration of phosphate and calcitriol.

Table 1. Blood and urine biochemical and hormonal variables in 8 XLH subjects treated on day 1 with phosphate alone, on day 2 with phosphate + cinacalcet, and at follow-up after chronic treatment with phosphate + calcitriol

	Treatment -	Oral Phosphate: Day 1		Oral Phosphate + Cinacalcet: Day 2		Follow-up: Period E	Name I Dana
		Period A: 0 h	Period B: 4 h	Period C: 0 h	Period D: 4 h	(oral phosphate + calcitriol)	Normal Range
	Ca ²⁺ (mmol/L)	1.28 ± 0.03	1.23 ± 0.04	1.26 ± 0.04	$1.13 \pm 0.06^{\circ}$	1.24 ± 0.07	1.13-1.37
	Phosphate (mg/dl)	2.1 ± 0.4	3.1 ± 0.4^{b}	2.2 ± 0.5	3.4 ± 0.3^{e}	2.9 ± 0.6^{b}	2.9-4.9
	PTH (pg/ml)	36 ± 19	$53 \pm 13^{\circ}$	34 ± 6	$23 \pm 8^{\circ}$	33 ± 15	7–75
	FGF23 (pg/ml)	147 ± 90	149 ± 67	192 ± 120^{d}	221 ± 91^{d}	247 ± 195^{d}	9-53
	1,25 vitamin D (pmol/L)	67 ± 35	75 ± 44	13 ± 21^{d}	17 ± 25 ^d	14 ± 6 ^d	35–84
	TP/GFR (mg/dl)	1.70 ± 0.38	1.81 ± 0.42	1.73 ± 0.36	2.48 ± 0.39^{c}	1.86 ± 0.71	2.8-4.7
	Ca/creatinine ^a (mg/mg)	0.12 ± 0.08	0.06 ± 0.04	0.13 ± 0.08	0.10 ± 0.08	0.14 ± 0.05	<0.20

^aMeasured in 6 subjects.

Alon US, Levy-Olomucki R, Moore WV, Stubbs J, Liu S, Quarles LD. Calcimimetics as an adjuvant treatment for familial hypophosphatemic rickets. Clin J Am Soc Nephrol. 2008 May;3(3):658-64

 $^{^{\}mathrm{b}}P < 0.05 \ versus \ \mathrm{A, C.}$

 $^{^{\}circ}P < 0.05$ versus all other groups. $^{\circ}P < 0.05$ versus A, B. $^{\circ}P < 0.05$ versus A, C, E (P = 0.06 versus B).

Take home points:

 Hypophosphatemic rickets is a rare disorder, related to phosphate wasting in kidneys

 The defect could be at a different level (bone – PHEX, DMP1, serum – FGF 23, kidney – Na-P co transporters)

Phosphate and calcitriol are used for the treatment,
 phosphate and cinacalcet could be an alternative

References:

- Gattineni J, Baum M. Genetic disorders of phosphate regulation. Pediatr Nephrol. 2012 Sep;27(9):1477-87
- Isakova T, Gutiérrez OM, Wolf M. A blueprint for randomized trials targeting phosphorus metabolism in chronic kidney disease. Kidney Int. 2009 Oct;76(7):705-16
- Alon US, Levy-Olomucki R, Moore WV, Stubbs J, Liu S, Quarles LD. Calcimimetics as an adjuvant treatment for familial hypophosphatemic rickets. Clin J Am Soc Nephrol. 2008 May;3(3):658-64