

A 27 year old, post-partum, with nausea, vomiting, and hypercalcemia

Matt Ettleson, M.D.*

Endorama

September 10, 2020

ZOOM

*I have no conflicts of interest to disclose.

Learning Objectives

- Discuss evaluation for post-partum patient with multiple endocrine abnormalities
- Review diagnostic considerations in pituitary dysfunction
- Discuss clinical management and follow up
- (Attempt to connect endocrine and neuromuscular findings if time allows)

27 year old female with a PMH of depression and possible cyclic vomiting syndrome presents to UC after multiple admissions for dehydration. She reports several months of vomiting and decreased appetite since the birth of her second child. The pregnancy and delivery were uncomplicated. Has lost about 20lbs over the last 2 months. She feels globally weak. No cough, fever, or difficulty swallowing. No sexual activity since childbirth and no menses. Unable to breastfeed. She has been told her potassium and magnesium have been low, but could not fill supplement prescriptions due to pharmacy closures. It appears she may have been started on methimazole for hyperthyroidism, but she did not fill the prescription.

Initial vitals and pertinent exam: Temp 36.7, BP 101/73, HR 101, SO₂ 99% Appears fatigued. Neck supple. No tenderness or thyromegaly. Normal weight. Reflexes unremarkable. No conjunctival redness or proptosis. Non-obese. No lower extremity edema. Skin very dry.

After initial fluid resuscitation, 18 hours after presentation:

Phos: 3.6 Mag: 2.1

ESR: 120 CRP: 37

Calcium: 13.5 **(14.5)** PTH: 5 Albumin: 2.7

COVID 19: (-) multiple

TSH: 0.01 Total T3: 128 Free T4: 0.93 Total T4: 5.9

Endocrinology consulted.

What additional labs/eval/management do you predict were recommended?

Unremarkable. No hilar adenopathy.

Hypercalcemia

6.0.1.22	6/14/2020 1226	6	/15/2020 0656		6/15/2020 1433		6/15/2020 1825		6/16/2020 0525		6/16/2020 1740		6/17/2020 0542		6/18/2020 1041	6/19/2020 0752		6
BASIC & COMPREHENSIVE Calcium	14.4 *	*	13.5 *	*	12.2	•	12.1	•	11.5	^	11.5	•	10.9	•	9.9	8.7		

No calcitonin or bisphosphonates given.

Abnormal thyroid function

Pooled prevalence study of postpartum thyroiditis

Subgroups	First author	Publication year	Country	Total sample	No. with PPTD	Prevalence	95% CI
Type 1 DM	Alvarez-Marfany (14)	1994	US	28	7	25	12.7-43.4
	Gerstein (17)	1993	Canada	40	9	22.5	12.3-37.5
	Bech (19)	1991	Denmark	57	6	11	4.9-21.1
Totals				125	22	-	_
Pooled estimate						19.6	19.5-19.7
Family history	Furlanetto (28)	2000	Brazil	52	5	9.6	4.2-20.6
5	Alvarez-Marfany (14)	2000	US	12	4	33.3	13.8-60.9
Totals				64	9	_	
Pooled estimate						22.3	21.7-22.9
Prior thyroid disease	Lazarus (30)	1997	UK	13	9	69.2	42.3-87.3
,	Tada (16)	1994	Japan	92	37	40.2	30.8-50.4
	Othman (21)	1990	UŔ	5	5	100	56.5-100
Totals				110	51	_	_
Pooled estimate						43.2	43.0-43.3

Pooled prevalence in general population is 8%.

Prevalence increased with prior disease, family history, and history of type I DM.

Thyroid. 2006;16(6):573-582.

Abnormal thyroid function

Differentiation of thyrotoxicosis from thyroiditis and Graves' disease

	6/14/2020 1514	6/15/2020 0656	6/19/2020 0752	6/20/202 0421	20	6/25/2020 1242		6/26/2020 0451	7/1/2020 1439	7/2/2020 0530	7/2/2020 1359	7/8	3/2020)457	_	7
	0.02*		0.50 *	0.66	*	1		0.41 *		0.27 *	0.27 *	4	0.56 *		
Thyroglobulin Ab	0.93	<0.4	0.39	- 0.00	, ,			0.41	•	0.37	↓ 0.57	-	0.50	-	
Thyroid Perox. Ab		<0.4													
Thyroid Stimulatin	0.01 * 🖕		0.02 *	- 0.02	2* 🖕	0.57 *							4.59 *	•	
Triiodothyronine		128 *	66 *	- 54	l* 🕌	35 *	-								
Thyroxine		5.9 *				3.9 *	-		3.6 *	•					

levothyroxine started

- Graves' hyperthyroidism
- thyroiditis
- central hypothyroidism

TITT	6/16/2020 0525	6/17/2020 0957	6/17/2020 1452	6/17/2020 1800
ENDOCRINOLOGY	101		ono.	
BHCG, Plasma, Quant.				
Cortisol	<1.0 *			
FSH				3.6 *
Luteinizing Hormone				1.8 *
Pregnancy Test, Ur	-		Negative *	
Prolactin				70.27 * 🔶
FSH				3.6 *
ACTH		1.6 *		
IGF1 LC MS				· · · · · · · · · · · · · · · · · · ·

47 ng/mL (66 – 303 ng/mL)

Major causes of hypopituitarism

Hypothalamic diseases

Mass lesions – Benign (craniopharyngiomas) and malignant tumors (metastatic from lung, breast, etc)

Radiation - For CNS and nasopharyngeal malignancies

Infiltrative lesions – Sarcoidosis, Langerhans cell histiocytosis

Infections – Tuberculous meningitis

Other – Traumatic brain injury, stroke

Pituitary diseases

Mass lesions - Pituitary adenomas, other benign tumors, cysts

Pituitary surgery

Pituitary radiation

Infiltrative lesions - Hypophysitis, hemochromatosis

Infection/abscess

Infarction – Sheehan syndrome

Apoplexy

Genetic mutations

Empty sella

CNS: central nervous system.

B: 11.2 mm

ge O27Y F CC# 21478974

Α

FINDINGS: There is diffuse enlargement and enhancement of the pituitary gland, measuring up to 11 mm. The pituitary stalk, cavernous sinuses, and optic chiasm are intact. The imaged portions of the brain are unremarkable, without evidence of acute infarction.

IMPRESSION: Diffuse enlargement of the pituitary gland could represent hyperplasia, for example.

Hypophysitis fundamentals

There are now five recognized primary forms of hypophysitis:

- 1. lymphocytic
 - dense infiltration by lymphocytes, disruption of anterior pituitary architecture, fibrosis
 - Associated with pregnancy
- 2. granulomatous
 - characterized by giant cell granulomas, presents as a mass lesion, affects both men and women equally
- 3. xanthomatous
 - extremely rare, foamy histiocyte infiltration
- 4. plasmacytic
 - associated with IgG4 disease, infiltration by plasma cells
- 5. Immunotherapy-related
 - Seen with ipilimumab and combination therapy
 - Usually permanent

Horm Res 2007;68(suppl 5):145-150 Endocr Rev. 2019 Feb 1:40(1):17-65

Clinical symptoms and MRI findings of lymphocytic hypophysitis

Symptoms	Frequency, %			
Mass effects				
Headache	60			
Visual disturbance	40	MRI characteristic	Hypophysitis	Macroadenoma
Bitemporal hemianopsia	32			
Impaired visual acuity		Signal intensity on T_1	Relatively low	Isointense
Diplopia	<5	Signal intensity on T_2	High	Usually isointense
	20	Contrast enhancement	Marked	Moderate
Endocrine dysfunction	80	Pattern of enhancement	Homogeneous	Focal
Adrenal insufficiency	65	Shape	Symmetric	Dumbbell
Hypothyroidism	60	Dural enhancement	Common	Rare
Growth hormone deficiency	54	1 	_	
Hypogonadism	40			
Hyperprolactinemia	30			
Diabetes insipidus	15			

Histopathological appearance of lymphocytic hypophysitis

FIG. 3. Histological appearance of the pituitary in AH. The infiltrate disrupts the normal acinar architecture and damages the hormone-secreting cells (A). The infiltrate is mainly mononuclear and composed of lymphocytes and scattered plasma cells (B).

Prevalence of affected pituitary hormone axes

TABLE 6. Endocrine assessment of pituitary function at presentation in patients with LAH, LINH, or LPH

	LAH (n = 245)	LINH $(n = 38)$	LPH $(n = 95)$	
Adrenal axis				
Pituitary defect	136 (56)	0	44 (46)	
Adrenal defect	8 (3)	0	0	
Normal	56 (23)	33 (84)	34 (36)	
Not recorded	45 (18)	6 (16)	17 (18)	
Thyroidal axis				
Pituitary defect	107 (44)	0	37 (39)	
Thyroid defect	27 (11)	0	8 (9)	
Normal	62 (25)	34(87)	35 (37)	
Increased	6 (2)	0	0	
Not recorded	43 (18)	5(13)	15 (16)	
Gonadal axis				
Pituitary defect	104 (42)	3(8)	45 (47)	
Gonadal defect	2(1)	0	0	
Normal	72 (29)	30(77)	33 (35)	
Not recorded	67 (27)	6(15)	17 (18)	
GH				
Decreased	63 (26)	0	48 (51)	
Normal	76 (32)	31(79)	25 (26)	
Increased	4(1)	8 (21)	0	
Not recorded	100 (41)	0	22(24)	
PRL				
Decreased	62(25)	0	15 (16)	
Normal	75 (31)	28(72)	29 (30)	/
Increased	57 (23)	5(13)	38 (40)	/
Not recorded	51(21)	6 (15)	13 (14)	/
ADH				
Decreased	0	38 (98)	90 (95)	
Normal	47 (19.2)	0	5 (5)	
Increased	1(0.4)	0	0	
Not recorded	197 (80.4)	1 (2)	0	

NIVERSITY OF

Loss of ACTH production is the most common defect, followed by TSH and LH, FSH

Posterior pituitary dysfunction can be seen, but usually with preserved anterior function

Data represent number of patients, with percentages in *parentheses*.

Two case reports of lymphocytic hypophysitis

Case report 1

A 36 year old woman presented with fever, tachycardia and failure to lactate 8 weeks after delivery.

She was found to be thyrotoxic, hypercalcemic, and adrenally insufficient.

MRI pituitary showed mild swelling of the pituitary with an irregular region.

She recovered over several months of glucocorticoid therapy.

Two case reports of lymphocytic hypophysitis

Case report 2

A 27 year old presented with secondary amenorrhea for 8 months.

Found to have mild hyperprolactinemia with 3.3 cm mass.

Also mildly hypothyroid with positive TPO antibodies (TSH 8.2 mU/L).

Trans-sphenoidal decompression surgery attempted but aborted due to fibrous tissue in sella, path dx c/w hypophysitis.

MRI improved after 2 months of 40 mg of prednisone daily.

NCV/EMG

Conclusion:

This is an abnormal study that demonstrates a moderately-severe

axonal sensorimotor polyneuropathy, which can be consistent with

an axonal variant of Guillain-Barre Syndrome (e.g. AMSAN) or

other inflammatory neuropathies/polyradiculoneuropathies. There

is no evidence for myopathy in this study.

Comment

Nerve/muscle biopsy

FINAL PATHOLOGIC DIAGNOSIS

Skeletal muscle and periphera

A. Left sural nerve: EXTENSIVE ONGOING AXONAL DEGE

B. Left gastrocnemius: CHRONIC ATROPHIC CHANGES, see There is some discrepancy between the findings in the nerve and the muscle biopsy: The peripheral nerve biopsy shows fairly diffuse features of axonal degeneration with unraveling myelin sheaths. This goes along with increase staining for CD68 within fascicles. Overall, there are no additional change that would clearly establish the underlying etiology of these changes. No significant inflammatory infiltrates or blood vessel abnormalities are seen. The findings could certainly go along with the time course of the summarized presentation.

The skeletal muscle biopsy shows somewhat chronic atrophic changes with nuclear bags, subtle fatty changes and rare atrophic fibers. The more chronic appearance does not seem to fit the time course described in the history below or that suggested by the changes in the nerve biopsy. To what extent these changes are reflective of the same disease process is difficult to determine. No inflammatory infiltrates or blood vessel abnormalities are present within the muscle biopsy. Patient follow up

Patient admitted to rehab (Shirley Ryan) for intensive physical therapy for axonal polyneuropathy (variant of Guillain-Barre syndrome). Strength is improved but not yet walking without assistance.

Regarding management of lymphocytic hypophysitis/hypopituitarism:

For secondary adrenal insufficiency:

- Following the diagnosis, patient was started on 40 mg of prednisone to treat hypophysitis, but also served as corticosteroid replacement
- Transitioned to hydrocortisone 20 mg in AM, 10 mg in PM. Continues on this dose.

For secondary hypothyroidism:

• Started on 50 mcg **levothyroxine**, has been increased to 125 mcg daily (adherence to medical therapy has been an issue in the past)

Considering estrogen replacement if menses do not resume.