

THE UNIVERSITY OF CHICAGO MEDICINE & BIOLOGICAL SCIENCES

"39 year old pregnant woman with ketosis"

39 year old pregnant woman with ketosis

MONIKA DARJI, PGY5

JUNE 11, 2020

Objectives

Discuss DKA in pregnancy Discuss accelerated starvation Discuss euglycemic DKA and its causes Discuss euglycemic DKA in pregnancy

39 year old G4P1112 at 30w6d and recently diagnosed diabetes presents with

- 6-7 day history of shortness of breath and cough
- 2-3 day history of decreased appetite
- Subjective fevers at home
- Denies nausea or vomiting
- Has not taken insulin for the last 2-3 days

Initial Presentation

Other History

Past Medical History:

Diagnosed with diabetes mellitus at 8 weeks gestation

Gestational diabetes during 1st and 2nd pregnancy

Morbid obesity

Past Surgical History:

Right sided salpingectomy and oophorectomy in 2018

Social History:

- Married with 2 children
- Denies tobacco, alcohol, and illicit substances

Family History:

 Father, paternal aunt and grandparents – type 2 diabetes

Other History

Medications:

- Aspirin 81mg
- Prenatal vitamin
- Lantus 35 units daily
- Humalog 8 units with meals

Review of Systems:

Constitutional: **+fevers, decreased appetite**; No chills, activity change, weight change

HEENT: No visual disturbance, hearing loss, congestion, sore throat, neck pain

Resp: +cough, shortness of breath

CV: +palpitations; No chest pain, LE edema.

GI: No nausea or vomiting. No abdominal pain, d/c, or blood in stool.

MSK: No myalgias.

Skin: No rashes or ulcers.

Neuro: No seizures, syncope, headache, lightheadedness Endo: No heat/cold intolerance. No hair/skin changes noted. Heme: No adenopathy

Psych: Mood stable

Physical Exam:

Vitals: 116 kg, BMI 44, Temp 97.9, **HR 110**, RR 20, BP 125/74, **SpO2 99% on 2L O2 NC**

General: No apparent distress. Appears stated age.

HEENT: No pharyngeal erythema. PERRL, EOMI.

Neck: No neck tenderness. No thyromegaly or thyroid nodules appreciated.

Cardiovascular: tachycardic; regular rhythm. No peripheral edema.

Pulmonary/Chest: nonlabored respirations; scattered wheezes

Gastrointestinal: obese, gravid, nontender

Musculoskeletal: normal range of motion of joints.

Neurological: Alert & oriented, no focal deficits

Skin: No apparent bald spots. No acanthosis nigricans.

Psychiatric: normal mood, thought content, appropriate.

Initial Labs and Imaging

Glucose, Ser/Plasma	129 *	-
Sodium	134	
Potassium, Ser/Plasma	3.2	
Chloride	104	
Carbon Dioxide	13	
Anion Gap	17	-
BUN	3	
Creatinine	0.4	
eGFR, Non-African	129 *	
eGFR, African Amer	149 *	
Calcium	9.2	
Inorganic Phosphate		
Magnesium		
Total Protein	6.7	
Albumin	3.5	
Bilirubin, Total	0.7	
Bilirubin, Conjugated		
Bilirubin, Unconju		
Alk Phos, Serum	101	
AST (SGOT)	22	
ALT (SGPT)	17	

Beta-Hydroxybutyrate	2.74
Lactic Acid	0.9
ARTERIAL BLOOD G	AS
FIO2	21
pH (Arterial)	7.34 🗸
PCO2 (Arterial)	21 🗸
PO2 (Arterial)	88
HCO3- (Arterial)	11.3 🗸
Base Excess (Arter	MINUS 12 *
SO2 (Arterial)	99.2 *
Temperature	37.0
pH (Temp Corr Art)	7.34
PCO2 (Temp Corr Art)	21 🗸
PO2 (Temp Corr Art)	8 22
Hemoglobin	10.1
Oxyhemoglobin	96.7 *
Deoxyhemoglobin	<1.0
Carboxyhemoglobin	1.3
Methemoglobin	1.2

A1c 6.0%

OF

A1c 6.7% at diagnosis

SARS-CoV 2 RNA - POSITIVE

Chest x-ray - bilateral opacities present

CT chest – ground glass opacities bilaterally

Hospital Course

Covid positive

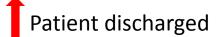
- Respiratory status remained stable during hospital stay
- Required supplemental oxygen the first day of admission
- On subsequent days, O2 sats >95% on room air

Anion gap metabolic acidosis

- Initially ketosis thought to be from starvation ketosis
- Appetite much improved on day 1, back to normal by day

 \bigcirc

	4/16/2020 0554		4/16/2020 1013		4/16/2020 1156	4/16/2020 1410		4/16/2020 2327		4/17/2020 0430		4/17/2020 1429		4/17/2020 1826	
Carbon Dioxide	13	-	12	*		13	*	13	*	13	*	15	-	16	*
Anion Gap	17	*	18	*		15		17	*	18	*	17	*	15	
Beta-Hydroxybutyrate	2.74	•	2.94	-		1.71	•	2.41		2.65	^	1.54	*	0.41	


Ketosis persisted, despite appetite being back to normal and patient eating 100% of her meals and being restarted on insulin

	4/18/2020 0446		4/18/2020 0446		4/18/2020 1253		4/18/2020 1833		4/19/2020 0334		4/19/2020 0334		4/19/2020 0746		4/19/2020 1214	
Carbon Dioxide	17	*	16	+	19	*	19	-	17	-	17	•	17	-	19	-
Anion Gap	15		15		12		12		14		13		14		14	
Beta-Hydroxybutyrate	1.51	-	1.49	-	0.34	1	0.10		0.59	•	0.59	*	0.23		0.10	

Patient was transferred to ICU for insulin gtt given concern for euglycemic DKA

Transitioned off insulin gtt to lantus 35 units daily and Humalog 8 units with meals


	4/19/2020 2000		4/20/2020 0450		4/20/2020 1701		4/21/2020 0718		4/21/2020 1814		4/22/2020 0945		4/22/2020 1426	
Carbon Dioxide	18		18	-	18	+	18	-	17	-	17	-	18	-
Anion Gap	15		13		14		16	-	16	*	15		14	
Beta-Hydroxybutyrate	0.76	-	0.97	*	0.30		1.00	-	1.03 *		0.57	-	0.46	*

Blood sugars ranged 80s to 160s throughout hospital stay

DKA in pregnancy

SECOND AND THIRD

TRIMESTERS

AN OBSTETRIC EMERGENCY TO 3 PERCENT OF PREGNANT WOMEN WITH DIABETES ASSOCIATED WITH RISKS TO BOTH THE MOTHER AND THE FETUS

RESISTANCE AND

ACCELERATED KETOSIS

PREDISPOSE THE PREGNANT WOMAN WITH DIABETES TO DKA

Incidence

	Time Interval	Incidence, % (No.)	Perinatal Mortality Rate, % (No.)
Lufkin et al. (1)	1950-1979	7.9 (18/228)	27.8 (5/18)
Kilvert et al. (2)	1971-1990	1.7 (11/635)	22
Montoro et al. (3)	1972-1987	3.9 (22/560)	35 (7/20)
Chauhan et al. (4)	1976-1981	22	35
	1986-1991	3	10
Cullen et al. (5)	1985-1995	2 (11/520)	9 (1/11)

Precipitating factors

Infection

Inadequate insulin management or inappropriate insulin cessation

Acute illness

Stress

Dehydration

Intractable vomiting

β-sympathomimetic use

Steroid administration for fetal lung maturation

Montoro et al. - 15-year series of cases of DKA in pregnancy,

- 40% of cases due to cessation of insulin therapy
- 20% of cases due to infection
- 30% of causes were previously undiagnosed diabetes

Physiologic changes in pregnancy

Compensated primary respiratory alkalosis

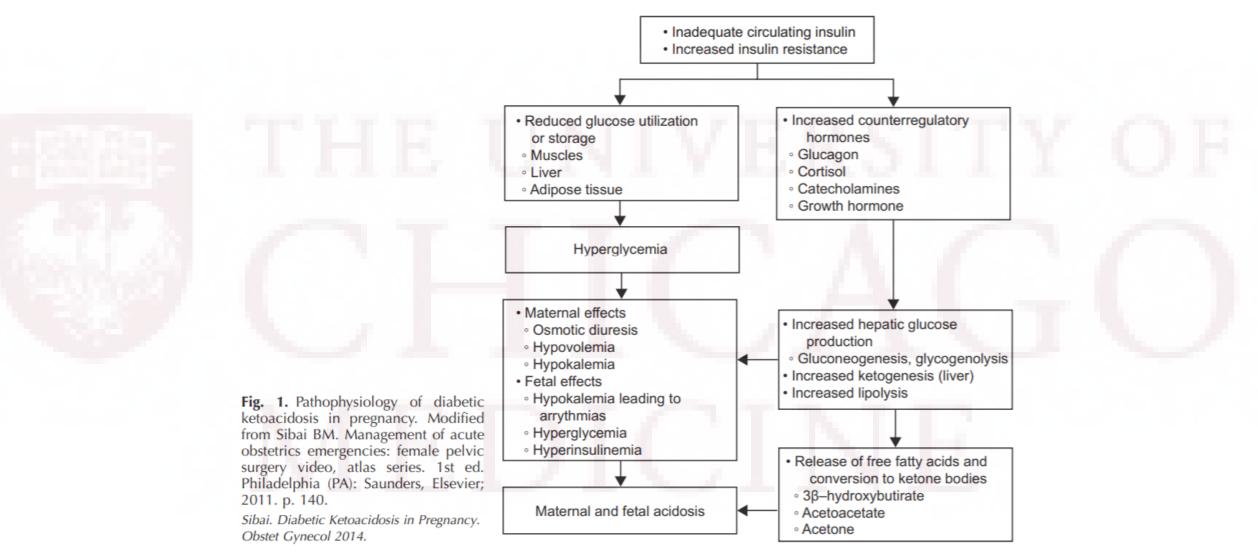
pH is 7.43, PCO2 is 30 mm Hg, and bicarbonate is 19 –20 mEq/L.

Pregnant woman more susceptible to metabolic acidosis, particularly DKA

Relative insulin resistance, enhanced lipolysis, elevated free fatty acids, and ketogenesis

Ketone bodies can be seen in the serum and urine of normal pregnant women throughout the antepartum period

Prone to develop more severe and rapidly progressive episodes of DKA and at lower glycemic levels after 20 weeks of gestation


Physiologic changes in pregnancy

Human placental lactogen, progesterone, and cortisol, impair the action of maternal insulin and further contribute to a diabetogenic state

 Progesterone decreases the gastrointestinal motility and enhances the carbohydrate absorption which promotes hyperglycemia

Insulinase from the placenta depletes maternal insulin

 \bigcirc

Crit Care Med 2005 Vol. 33, No. 10 (Suppl.)

Maternal concerns

Considered a medical emergency

Severe dehydration can lead to hypotension

Acidosis can cause organ dysfunction

Electrolyte imbalance can cause cardiac arrhythmias

Maternal mortality related to DKA is <1 percent

Fetal outcomes

Morrison et al. Retrospective cohort study of pregnant women with type 1 diabetes and at least one episode of DKA between 1996 and 2015 at one of three teaching hospitals in Boston

- 77 DKA events in 64 pregnancies in 62 women
- Mothers presented in DKA between 5 and 38 weeks of gestation
- Fetal demise occurred in 15.6% of the pregnancies
- Preterm birth occurred in 46.3% of the pregnancies
- Neonatal intensive care unit (NICU) admissions in 59% of the pregnancies

Fetal concerns

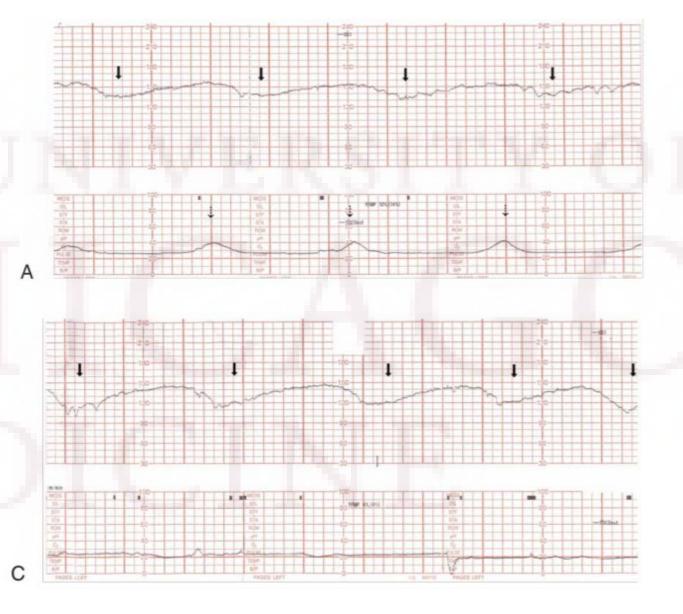
The same metabolic disturbances that occur during maternal DKA are induced in the fetus

Maternal acidemia decreases uterine blood flow -> decrease in placental perfusion leading -> decreased fetal oxygen delivery

Fetal oxygen delivery is further compromised by a shift of the maternal oxyhemoglobin dissociation curve caused by acidemia

Fetal hypokalemia may lead to fetal arrhythmias and cardiac arrest

Severe acidosis results in decreased fetal heart rate variability


Maternal phosphate deficits may contribute to fetal hypoxia

Maternal hyperglycemia results in fetal hyperglycemia and fetal osmotic diuresis and volume depletion

 \bigcirc

Fetal heart rate tracings in pregnant women with DKA can show:

- Decreased or absent variability
- Absent accelerations
- Late decelerations

Sibai et al. OBSTETRICS & GYNECOLOGY. 2014

Long term effects

Effects of DKA during pregnancy have not been well studied

Some studies have shown an association between the presence of ketosis in pregnant women with diabetes and lower IQ scores

An association has been reported between ketonuria detected during prenatal visits and adverse neurobehavioral outcomes even in nondiabetic pregnancies

Acidemia has been associated with poor myelination and poor cortical connectivity

 These findings are associated with greater deficits in expressive language among children diagnosed with autism spectrum disorder 96

Treatment

DKA is treated similarly in pregnant and nonpregnant patients. This includes:

- Administration of insulin
- Replacement of intravascular volume
- Repleting electrolytes

DKA alone is generally not an indication for delivery

The timing of delivery should be individualized based on gestational age, maternal condition, fetal condition

If fetal condition does not improve or if the maternal condition continues to deteriorate despite aggressive therapy, emergency delivery may be warranted

Accelerated starvation

Term coined by Norbert Freinkel in 1965

Exaggerated response to fasting with increased ketosis compared to non-pregnant women
Lipolysis and ketogenesis are simulated during pregnancy by pregnancy related hormones

Has been observed with overnight fasting or when feeding is delayed by only a few hours

One study showed maternal ketone levels during fasting are elevated by 33% during the third trimester as compared with the postpartum state (Sibai et al)

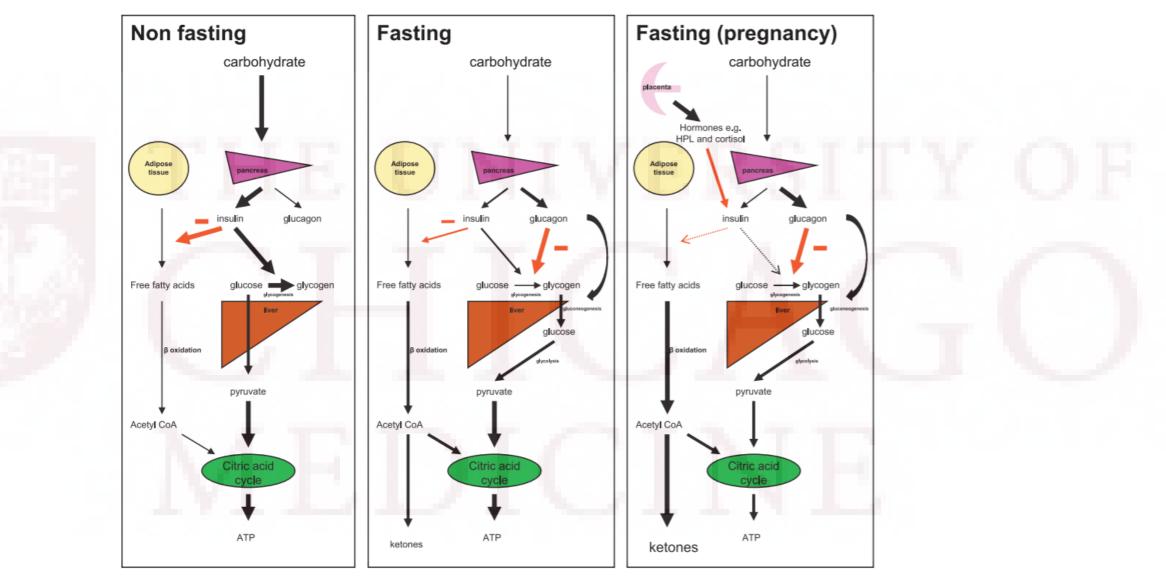


Fig. 1. Metabolic changes in the fasting and non-fasting state.

BUCHANAN ET AL. "ACCELERATED STARVATION IN LATE PREGNANCY: A COMPARISON BETWEEN OBESE WOMEN WITH AND WITHOUT GESTATIONAL DIABETES MELLITUS." 1990.

METZGER ET AL. ACCELERATED STARVATION IN PREGNANCY: IMPLICATIONS FOR DIETARY TREATMENT OF OBESITY AND GESTATIONAL DIABETES MELLITUS. 1987.

Pregnant women in third trimester of pregnancy

- Obese women with normal glucose tolerance (n = 10)
- Age- and weight-matched women with gestational diabetes mellitus (n = 10)
- 3-Hydroxybutyrate levels were similar in the two groups at 12 hour and 18 hour fasts

Pregnant women with and without gestational DM

14 hour and 18 hour of dietary deprivation

No significant difference between the two groups in terms of ketosis

Montelongo et al.

12 age-matched PGDM women, 9 GDM women, and 12 healthy control subjects

1st, 2nd, and 3rd trimester of gestation and at postpartum and post-lactation

FFA and 3-hydroxybutyrate levels were higher in both PGDM and GDM patients than in control subjects during gestation but not after postpartum Plasma lipidic components in normal and diabetic women during pregnancy, postpartum, and postlactation

	FFA (μM)	β-OH-butyrate (μM)	TG (mM)	Cholesterol (mM)
Normal control subjects				
1st trimester	353.1 ± 49.1 (a)	74.8 ± 36.6 (a)	0.68 ± 0.10 (a)	4.48 ± 0.18 (a)
2nd trimester	328.2 ± 35.4 (a)	76.4 ± 11.3 (a)	1.17 ± 0.10 (b)	6.02 ± 0.21 (b)
3rd trimester	314.1 ± 33.9 (a)	110.6 ± 43.6 (a)	2.03 ± 0.26 (c)	6.69 ± 0.36 (c)
Postpartum	355.5 ± 44.1 (a)	84.1 ± 33.6 (a)	0.95 ± 0.18 (ab)	5.86 ± 0.33 (b)
Postlactation	319.6 ± 36.0 (a)	78.1 ± 21.8 (a)	0.62 ± 0.06 (a)	4.81 ± 0.35 (a)
PGDM women		. ,		
1st trimester	599.8 ± 83.2 (a)*	455.3 ± 114.5 (a)†	0.58 ± 0.05 (a)	4.18 ± 0.16 (a)
2nd trimester	483.8 ± 62.2 (a)*	378.1 ± 115.3 (a)*	1.22 ± 0.10 (b)	5.81 ± 0.36 (b)
3rd trimester	$545.1 \pm 54.8 (a)^{\dagger}$	366.5 ± 95.5 (a)*	1.92 ± 0.20 (c)	6.21 ± 0.45 (b)
Postpartum	554.6 ± 120.5 (a)	313.3 ± 126.6 (a)	0.85 ± 0.08 (d)	6.09 ± 0.40 (b)
Postlactation	457.1 ± 107.3 (a)	566.8 ± 204.9 (a)	0.68 ± 0.09 (acd)	4.82 ± 0.20 (ab)
GDM women	.,			. ,
1st trimester	642.4 ± 63.9 (a)‡	444.9 ± 97.9 (a)‡	0.87 ± 0.10 (a)	4.67 ± 0.37 (a)
2nd trimester	474.6 ± 38.5 (bd)*	370.3 ± 116.8 (ab)†	1.54 ± 0.22 (b)	5.90 ± 0.35 (ab)
3rd trimester	499.6 ± 36.3 (ab)†	348.3 ± 101.3 (ab)*	2.06 ± 0.23 (c)	6.30 ± 0.33 (b)
Postpartum	319.7 ± 30.9 (c)	50.0 ± 7.3 (c)	1.05 ± 0.15 (ab)	6.07 ± 0.35 (ab)
Postlactation	371.9 ± 23.8 (d)	49.5 ± 11.6 (abc)	0.99 ± 0.23 (abc)	5.46 ± 1.39 (ab)

Values are means \pm SE. Letters in parenthesis correspond to statistical comparison by Student's *t* or postgestational stages studied: the same letter within one parameter means no statistical difference between the groups, whereas different letters indicate significant differences between the corresponding groups ($P \le 0.05$). Statistical comparisons of PGDM or GDM women versus control subjects were calculated by Student's *t* independent test.

TABLE 3

‡P < 0.001.

 \mathcal{O}

^{*}P < 0.05.

[†]*P* < 0.01.

 \bigcirc

	4/16/2020 0554		4/16/2020 1013		4/16/2020 1156	4/16/2020 1410		4/16/2020 2327		4/17/2020 0430		4/17/2020 1429		4/17/2020 1826	
Carbon Dioxide	13	-	12	*		13	-	13	*	13	*	15	-	16	*
Anion Gap	17	*	18	-		15		17	*	18	*	17	*	15	
Beta-Hydroxybutyrate	2.74		2.94			1.71		2.41		2.65		1.54		0.41	

	4/18/2020 0446		4/18/2020 0446		4/18/2020 1253		4/18/2020 1833		4/19/2020 0334		4/19/2020 0334		4/19/2020 0746		4/19/2020 1214	
Carbon Dioxide	17	-	16	+	19	*	19	-	17	-	17	-	17	+	19	-
Anion Gap	15		15		12		12		14		13		14		14	
Beta-Hydroxybutyrate	1.51	-	1.49		0.34	-	0.10		0.59		0.59	*	0.23		0.10	

	4/19/2020 2000		4/20/2020 0450		/2020 701		4/21/2020 0718		4/21/2020 1814		4/22/2020 0945		4/22/2020 1426	
Carbon Dioxide	18		18	-	18	+	18	-	17		17	-	18	
Anion Gap	15		13		14		16	*	16	*	15		14	
Beta-Hydroxybutyrate	0.76	*	0.97	-	0.30		1.00	-	1.03 *		0.57	*	0.46	-

Characterized by metabolic acidosis, ketosis, blood glucose levels less than 200 mg/dl

Compared to DKA, insulin deficiency and insulin resistance are milder with increased renal glucose clearance

The underlying mechanism may be either due to decreased hepatic production of glucose during the fasting state or increased urinary excretion of glucose caused by an excess of counter-regulatory hormones

Euglycemic DKA

Causes of euglycemic DKA

SGLT2-I

(increasing urinary glucose excretion, reducing insulin secretion, stimulation of the production of free fatty acids and ketone production)

Euglycemia in patient with DKA

Pregnancy

(enlarged using of glucose by fetus and placenta, relative insulin

deficiency, increasing production of fatty acids, converted to ketones in

the liver)

Decreased caloric intake

(Decreased caloric intake in patients with diabetes who continue taking of insulin may maintain euglycemia, but unable to stop the ketone body formation. Lipolysis and free fatty acid production are accelerated during fasting)

Glycogen storage diseases and chronic liver disease

(glycogen induced hepatomegaly, liver dysfunction, fasting hypoglycemia and ketosis with euglycemia)

Other causes of eu-DKA

(pancreatitis, alcohol use, cocaine intoxication, gastroparesis, Duchenne muscular dystrophy, insulin use prior to hospital admission, sepsis)

L. Barski, et al. European Journal of Internal Medicine 63 (2019) 9–14

Fig. 2. Possible etio-pathogenetic mechanisms of euglycemic DKA.

Euglycemic DKA in pregnancy

Cullen et al

- 520 patients pregnant patients with diabetes hospitalized between 1985 and 1995
- 11 episodes (2%) of DKA were diagnosed
- 4 out of 11 had plasma glucose <200mg/dL (36%).

10 to 30 percent of cases of DKA in pregnancy have been observed with blood glucose levels <250 mg/dL (Whiteman et al)

Cases reported in type 1 and 2 diabetes, gestational diabetes

	Journal of Peri	natology (20	08) 28 , 310-312
© 2008 Nature	Publishing Group All r	ights reserved.	0743-8346/08 \$30

www.nature.com/jp

PERINATAL/NEONATAL CASE PRESENTATION Normoglycemic diabetic ketoacidosis in pregnancy

M Chico¹, SN Levine¹ and DF Lewis²

Case Report Euglycemic Diabetic Ketoacidosis in Pregnancy: A Case Report and Review of Current Literature

Johnny F. Jaber ⁽⁰⁾,¹ Matthew Standley,¹ and Raju Reddy ⁽⁰⁾

Case Report

Euglycemic Diabetic Ketoacidosis in Pregnancy

Nauman Tarif*, Wisam Al Badr**

Department of Medicine, *King Khalid University Hospital, Riyadh, **King Faisal Specialist Hospital, Riyadh

Case Reports > J Reprod Med. Sep-Oct 2012;57(9-10):452-5.

Diabetic Ketoacidosis Occurring With Lower Blood Glucose Levels in Pregnancy: A Report of Two Cases

Monika Madaan ¹, Kiran Aggarwal, Ritu Sharma, Shubha Sagar Trivedi

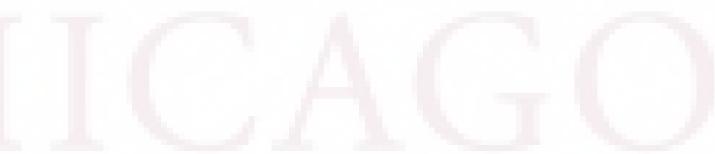
 \bigcirc

THE

Cases of euglycemic DKA in pregnancy

Authors	Age (years)	Diabetic history	Gestational age	Admission blood glucose (mg/dL)	Outcome of mother	Outcome of fetus
Bryant et al. [18]	Describes thr	ee cases of diabetic k		ant patients with adm tree cases are given	nission glucose <200 r	mg/dL. No specifics
Cardonell et al. [19]	33	Type 2 diabetes mellitus	Third trimester, 35 weeks	134	Discharged home	Emergent C-sec- tion at 35 weeks
Chico et al. [14]	29	Type 1 diabetes mellitus	Third trimester, 34 weeks	87	Discharged home	Nonemergent C-section at 34 weeks
Clark et al. [20]	34	Gestational diabetes	Third trimester, 36 weeks	140	Discharged home	Nonemergent C-section at 36 weeks
Cullen et al. [21]	Describes for	ur cases of diabetic ke		int patients with adm our cases are given	ission glucose <200 n	
Darbhamulla et al. [22]	30	Gestational diabetes	Third trimester, 33 weeks	95	Discharged home	Elective C-section at 39 weeks
Franke et al. [15]	23	Gestational diabetes	Third trimester, 32 weeks	127	Discharged home	Delivery at 38 weeks
Frise et al. [23]	40	Gestational diabetes	Third trimester, 35 weeks	52-85	Discharged home	Emergent C-sec- tion at 35 weeks
Guo et al. [4]	29	Unknown	Third trimester, 32 weeks	124	Discharged home	Delivery at 38 weeks
Kamalakannan et al. [24]	28	Type 1 diabetes mellitus	Third trimester, 36 weeks	234	Discharged home	Intrauterine fetal demise
Karpate et al. [25]	25	Unknown	Third trimester, 37 weeks	103	Discharged home	Delivery at 37 weeks
Lucero and Chapela [13]	22	Type 1 diabetes mellitus	First trimester, unknown weeks	153	Discharged home	Unknown
Madaan et al. [26]	30	Type 2 diabetes mellitus	Third trimester, 36 weeks	75-155	Discharged home	Elective C-section at 38 weeks
Madaan et al. [26]	23	Gestational diabetes	Third trimester, 34 weeks	89-164	Discharged home	Emergent C-sec- tion at 37 weeks
Montoro et al. [27]	Describes tw	o cases of diabetic ke		nt patients with adm wo cases are given	ission glucose <200 n	ng/dL. No specifics
Napoli et al. [16]	26	Type 1 diabetes mellitus	Third trimester, 34 weeks	211	Discharged home	Elective C-section at 34 weeks
Oliver et al. [28]	29	Type 1 diabetes mellitus	Third trimester, 28 weeks	245	Discharged home	Elective C-section at 34 weeks
Rivas et al. [29]	39	Gestational diabetes	Third trimester, 32 weeks	120	Discharged home	Emergent C-sec- tion at 32 weeks
Tarif and Al Badr [30]	37	Type 2 diabetes mellitus	Third trimester, 35 weeks	77	Discharged home	Unknown
Yu et al. [31]	30	Type 2 diabetes mellitus	Third trimester, 28 weeks	121	Discharged home	Elective C-section at 36 weeks

TABLE 1: Summary of literature describing cases of euglycemic diabetic ketoacidosis in pregnant mothers.


Back to this patient

This patient likely had starvation ketosis initially with accelerated starvation/ketosis with fasting every morning

Blood sugars well controlled

Now 38 weeks pregnant

Followed by MFM, Endo as outpatient

References

Uptodate, Pregestational (preexisting) diabetes mellitus: Glycemic control during pregnancy Uptodate Critical illness during pregnancy and the peripartum period Uptodate Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Clinical features, evaluation, and diagnosis Uptodate Pregestational (preexisting) diabetes mellitus: Obstetric issues and management Barski L, Eshkoli T, Brandstaetter E, Jotkowitz A. Euglycemic diabetic ketoacidosis. Eur J Intern Med. 2019;63:9-14. doi:10.1016/j.ejim.2019.03.014 Buchanan TA, Metzger BE, Freinkel N. Accelerated starvation in late pregnancy: a comparison between obese women with and without gestational diabetes mellitus. American Journal of Obstetrics and Gynecology. 1990 Apr;162(4):1015-1020. DOI: 10.1016/0002-9378(90)91307-x. Carroll MA, Yeomans ER. Diabetic ketoacidosis in pregnancy. Crit Care Med. 2005;33(10 Suppl):S347-S353. doi:10.1097/01.ccm.0000183164.69315.13 Cullen MT, Reece EA, Homko CJ, Sivan E. The changing presentations of diabetic ketoacidosis during pregnancy. Am J Perinatol. 1996;13(7):449-451. doi:10.1055/s-2007-994386 Frise CJ, Mackillop L, Joash K, Williamson C. Starvation ketoacidosis in pregnancy. Eur J Obstet Gynecol Reprod Biol. 2013;167(1):1-7. doi:10.1016/j.ejogrb.2012.10.005 Jaber JF, Standley M, Reddy R. Euglycemic Diabetic Ketoacidosis in Pregnancy: A Case Report and Review of Current Literature. Case Rep Crit Care. 2019;2019:8769714. Published 2019 Aug 20. doi:10.1155/2019/8769714 Jovanovic-Peterson L, Peterson CM. Sweet success, but an acid aftertaste?. N Engl J Med. 1991;325(13):959-960. doi:10.1056/NEJM199109263251310 Metzger BE, Freinkel N. Accelerated starvation in pregnancy: implications for dietary treatment of obesity and gestational diabetes mellitus. Biol Neonate. 1987;51(2):78-85. doi:10.1159/000242636 Metzger BE, Ravnikar V, Vileisis RA, Freinkel N. "Accelerated starvation" and the skipped breakfast in late normal pregnancy. Lancet. 1982;1(8272):588-592. doi:10.1016/s0140-6736(82)91750-0 Montelongo A, Lasunción MA, Pallardo LF, Herrera E. Longitudinal study of plasma lipoproteins and hormones during pregnancy in normal and diabetic women. Diabetes. 1992;41(12):1651-1659. doi:10.2337/diab.41.12.1651 Morrison FJR, Movassaghian M, Seely EW, et al. Fetal Outcomes After Diabetic Ketoacidosis During Pregnancy. Diabetes Care. 2017;40(7):e77-e79. doi:10.2337/dc17-0186 Sibai BM, Viteri OA. Diabetic ketoacidosis in pregnancy. Obstet Gynecol. 2014;123(1):167-178. doi:10.1097/AOG.0000000000000000

Whiteman VE, Homko CJ, Reece EA. Management of hypoglycemia and diabetic ketoacidosis in pregnancy. Obstet Gynecol Clin North Am. 1996;23(1):87-107. doi:10.1016/s0889-8545(05)70246-1