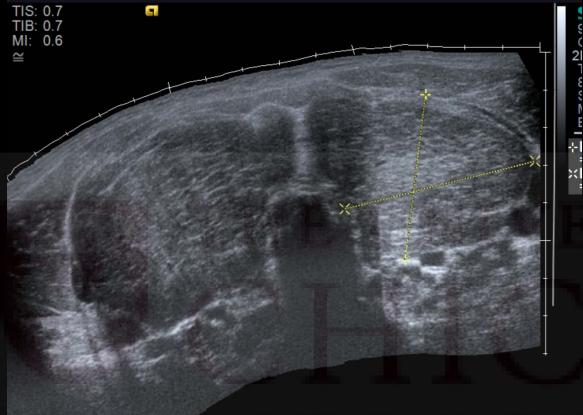
ENDORAMA 'RAPIDLY ENLARGING THYROID GLAND'

Kelvin Memeh MD, MRCS Fellow, Endocrine Surgery. Jan 30, 2020

LEARNING OBJECTIVES

- Review differential diagnosis of rapidly enlarging thyroid mass.
- Review the role of surgery in the diagnosis and treatment of the rapidly enlarging thyroid.
- A brief review of the indication for thyroidectomy in Hashimoto thyroiditis.
- Brief discussion of research in section of Endocrine Surgery


CASE: HISTORY

55 y/o M who presented to Endo surgery clinic with symptomatic goiter.

Background hx

- Diagnosed with hypothyroidism in 2017 and has been on levothyroxine since then.
- Thyroid US done at the time of diagnosis showed diffusely enlarged thyroid. No discrete nodules.
- Developed worsening dysphagia and choking sensation when lying flat on his back starting late 2018.
- Past Med : HTN, HLD, DM, Obesity, OSA.
- No hx of exposure to radiation.
- No family history of thyroid cancer/ problems

Thyroid US : Jan 2019 Diffusely enlarged heterogeneous thyroid.

<u>Right lobe</u>

11.2 x 5.1 x 6.1 cm (previously 7.7 x 4.1 x 4.9 cm in Dec 2017) Volume 228 cm³(previously 102cm³)

Left Lobe

9.4 x 4.5 x 5.2 cm (previously 7.2 x 3.7 x 4.0 cm in Dec 2017) Volume 149 cm³ (previously 77cm³)

TRANS

MEDICINE

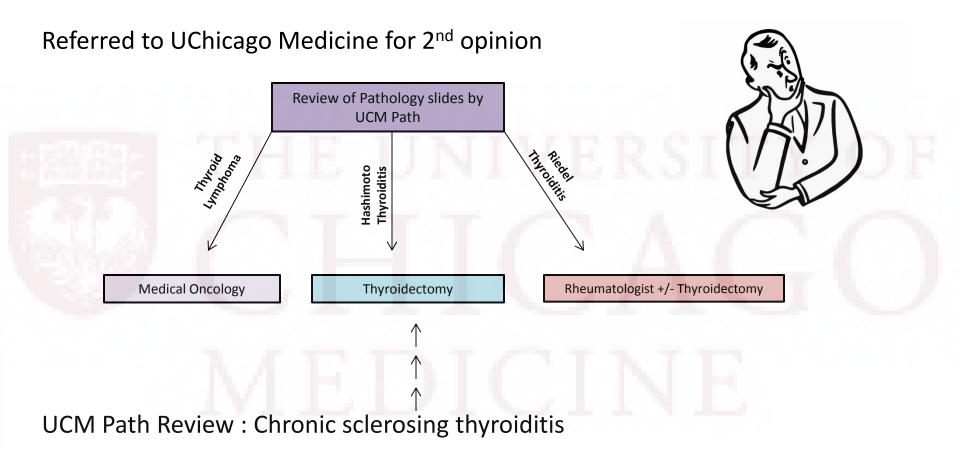
CASE: WORK UP

- Labs:
- TSH 7.03.
- Anti-thyroglobulin > 1000
- Core Needle biopsy 1/28/19:
- Thyroid tissue with atrophic follicles, diffuse infiltrate and stromal fibrosis
- Flow/PCR clonal B- cell gene re-arrangement suspicious for **B cell lymphoma**
- * Path recommended open biopsy for further evaluation

• Open thyroid biopsy Feb 2019

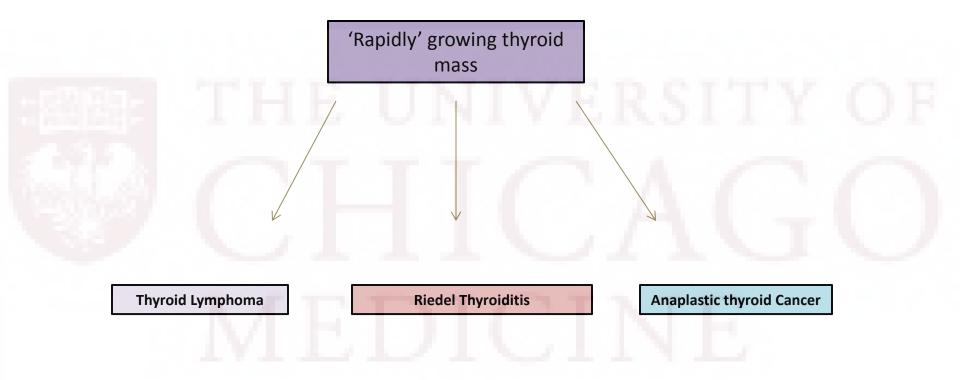
- Chronic sclerosing thyroiditis
- **↑**IgE4 raising suspicion for *Riedel thyroiditis*
- Positive plasma cells with features suspicious for *B cell lymphoma*

Consult - > Hem/ Onc



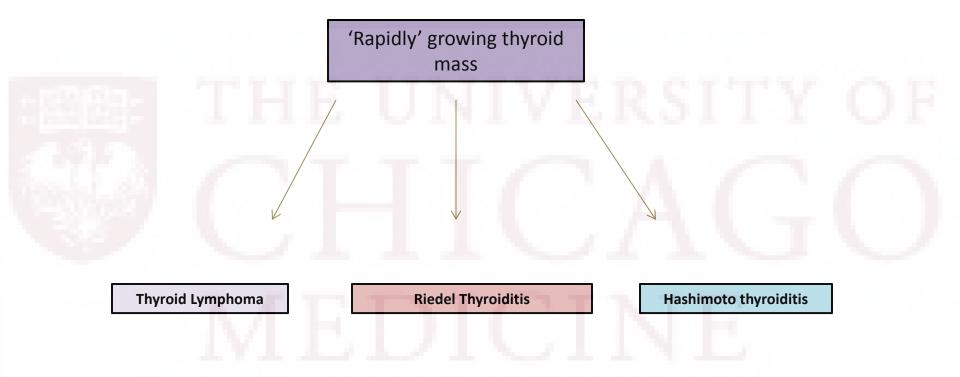
- Hem/Onc consult:
- CT Chest abdomen and pelvis ; negative for disease elsewhere.
- Assessment likely focal thyroid lymphoma. Recommended Rituximab.

OR:SEPT 2019


Final Path:

- Fibrosing variant of Hashimoto thyroiditis
- Four reactive lymph nodes.
- No atypical B cells infiltrates

CHICAG



DISCUSSION

DISCUSSION

Epidemiology & Diagnosis

- Primary thyroid lymphomas(PTL) are rare.
 - 1-5% of all thyroid tumors.
 - 2 % of all extra-nodal lymphoma
- 4:1 female predominance
- 60 -90% of PTL arise in the setting of thyroiditis
 - 0.5% of HT give rise to PTL
- <u>Females</u> with Hashimoto thyroiditis are about 20x more likely to develop PTL

- Typically presents with a 'rapidly' enlarging painless goiter with associated cervical LN.
- Most patients will have obstructive symptoms ; dysphagia, SOB/dyspnea/stridor, hoarseness, facial swelling
- ~ 10% of patients will have B symptoms (weight loss, night sweats, fever etc) ³

- Three main variants of PTL
- Diffuse Large B Cell (DLBC): most common, most aggressive
- Mucosa-associated lymphoid tissue(MALT) : good prognosis. Most commonly associated with Hashimoto thyroiditis
- Follicular lymphoma : least common, least aggressive.

Staging(Lugano Modification of Ann Arbor classification) Involvement Extranodal status(E) Stage Limited One node or a group of adjacent nodes Single extranodal lesions without nodal involvement Two or more nodal groups on the same Stage I or II by nodal extent with limited Ш side of the diaphragm contiguous extranodal involvement Advanced Nodes on both sides of the diaphragm; Ш nodes above the diaphragm with spleen involvement IV Additional non-contiguous extralymphatic involvement

<u>Diagnosis</u>

- Core needle biopsy for path and immunocytochemistry.
- Imaging not very useful for diagnosis but cross-sectional image helps for extent of disease, & monitoring response to therapy.
 - FDG: Hashimoto and PTL are FDG avid. But MALT is FDG negative
 - Radio iodine uptake scan: PTL does not take up radio-iodine

Treatment

- PTL are highly radio and <u>chemo-sensitive</u>: therapy is a combination of chemotherapy and radiotherapy.
- CHOP- R (cycophospamide, hydoxydaunoxorubucin, oncovin and prednisone) -Rituximab
- Older data showing no difference in OS or DFS between surgical resection/debulking vs surgical biopsy and definitive chemo-radiation.
- Surgery is <u>mostly diagnostic</u> in most center.

<u>Treatment</u>

- Thyroidectomy/debulking surgery.
- Severe relatively rapid airway compromise : CHOP-R vs Tracheostomy.
- Newer data suggest survival benefit after thyroidectomy in early stage disease (stage IE).
- Delineating intra-thyroidal disease from disease with node involvement Surgery with adjuvant radiation vs beam radiation + CHOP-R

Primary Thyroid Lymphoma: An Analysis of the National Cancer Database

Victoria Vardell Noble¹, Daniel A. Ermann², Emily K. Griffin¹, Peter T. Silberstein³

1. Internal Medicine, Creighton University School of Medicine, Omaha, USA 2. Internal Medicine, Creighton University Medical Center, Omaha, USA 3. Hematology-Oncology, Creighton University School of Medicine, Omaha, USA

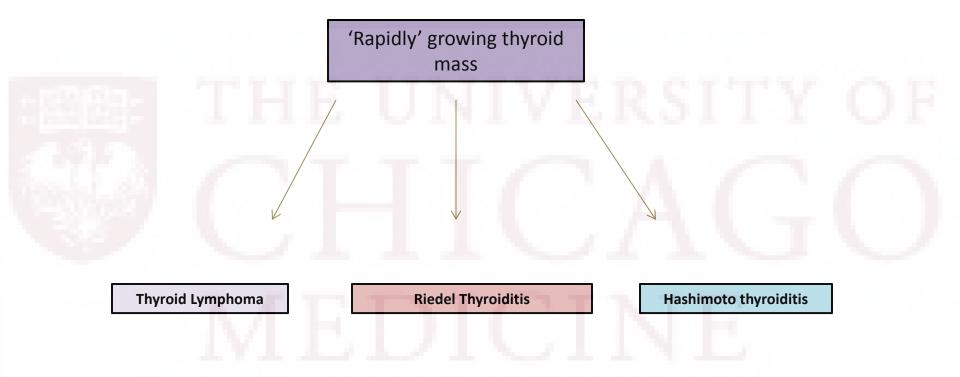
3466 PTL patents diagnosed btw 2004 and 2015 in the NCDB database

Aim:

- Clinical and epidemiological features.
- Association of treatment modalities and overall survival.

Multivariate analysis of management options affecting survival:

- - total or subtotal thyroidectomy (HR: 0.49).
- A survival with beam radiation vs no radiation
 - radiation (HR: 0.61)
 - adjuvant radiation following surgery (HR: 0.48).
- Chemotherapy (multi-agent) had a benefit vs no chemotherapy (HR: 0.71).


Mean overall survival by treatment method for primary thyroid lymphoma, from the NCDB, 2004-2015

* Reference; NS, not statistically significant (p >0.05); NCDB: National Cancer Database

Mean Survival		Years	P value
Surgical Treatment (n = 3423)			
	None	8.0	*
	Partial lobectomy/ local excision	8.4	NS
	Lobectomy	9.9	< 0.001
	Total/ Subtotal Thyroidectomy	9.7	< 0.001
Radiation Therapy $(n = 3421)$			
	None	8.3	*
	Beam Radiation	9.8	< 0.001
	Radioisotopes	7.3	NS
Chemotherapy (n = 3263)			
	None	8.2	*
	Single-agent Chemotherapy	7.7	NS
	Multiagent Chemotherapy	9.2	<0.001

DISCUSSION

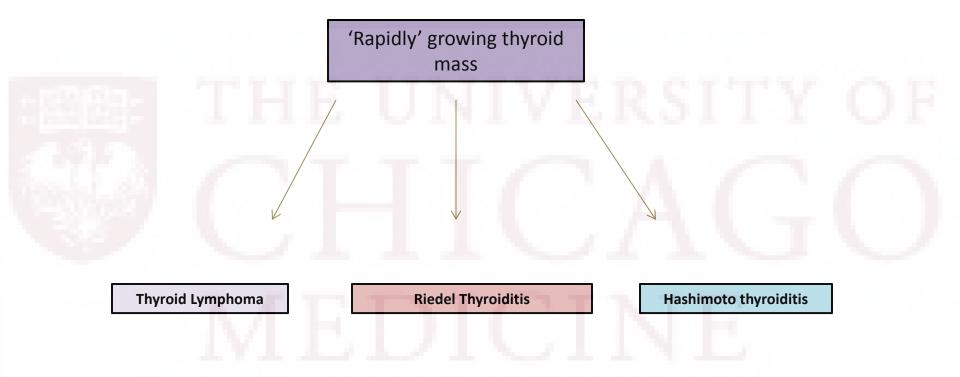


- Riedel's thyroiditis (RT), is a rare, chronic inflammatory disease of the thyroid gland.
- First reported by Professor Bernhard Riedel in 1883, RT is characterized by a <u>dense fibrosis</u> that replaces normal thyroid parenchyma.
- Female predilection (4:1). Mean age at diagnosis 47 years.
- RT can involve one or both thyroid lobes.
- ~ 30% of patients will have extra-cervical fibro-sclerosing disease. ? primarily a systemic disease.
- Cause and pathogenesis is not fully understood
- Fibro-sclerotic theory
 - Vs
- Auto-immune theory

- Current thoughts is that RT is part of IgG4 -related systemic disease.
- IgG4-RSD are characterized by lymphoplasmacytic infiltrates containing IgG4-positive plasma cells.
- These cells induced a chronic inflammatory process that leads to fibrosis.

Schema of pathogenesis:

- Clinical presentation:
- Hx of enlarging thyroid gland typically painless and stony hard.
- Local compression: Dysphagia, dysphonia, dyspnea, neck tightness and pressure
- Symptoms from systemic sclerosis: Retroperitoneal fibrosis, sclerosing cholangitis, mediastinal fibrosis, lacrimal and parotid sclerosis.
- Most patients are euthyroid ; up to 30 % maybe hypothyroid at diagnosis
- Diagnosis:
- CT Imaging:
 - a. Extension beyond the thyroid may help differentiates RT from the Fibrosing variant of Hashimoto thyroiditis.
 - b. Absence of Cervical lymphadenopathy



- Diagnosis/Labs
- TFT usually normal in most people.
- IgG4 levels ↑in about 95% of cases.
- Core or open biopsy is the definitive diagnostic test.
- Treatment & Prognosis
- Typically self –limiting but need supportive therapy.
- Frequently surgical intervention is required due to the compressive/invasive nature

DISCUSSION

HASHIMOTO THYROIDITIS

Epidemiology

- Hashimoto disease is the most prevalent auto-immune disorder worldwide.
- Hashimoto thyroiditis (HT) is the most common cause of hypothyroidism in the US
- Pathogenesis is not fully understood but thought to be autoimmune with lymphocyte infiltration and fibrosis as typical features.
- Hashimoto thyroiditis confers 60 80 fold ↑risk of developing PTL.

Clinical presentation

- Depends on the phase of disease.
- Hypo vs hyper vs euthyroid

HASHIMOTO THYROIDITIS

Diagnosis

- Symptoms; goiter, hypothyroid symptoms
- Anti-thyroid antibody- anti-thyroid peroxidase (anti-TPO) antibody and anti-thyroglobulin.
 - * up to 10% maybe antibody negative

Treatment

- The main therapy in HT is thyroid hormone replacement and most patients will respond well to thyroid hormone replacement.
- Subgroup of HT patients will continue to experience persisting (hypothyroidism-like) symptoms despite been euthyroid . ?auto-immune mediated inflammation of other tissues
 - Thyroid hormone replacement while euthyroid dose not relieve the persisting symptoms
 - Selenium supplementation; inconsistent data vs does not work

Annals of Internal Medicine

Thyroidectomy Versus Medical Management for Euthyroid Patients With Hashimoto Disease and Persisting Symptoms

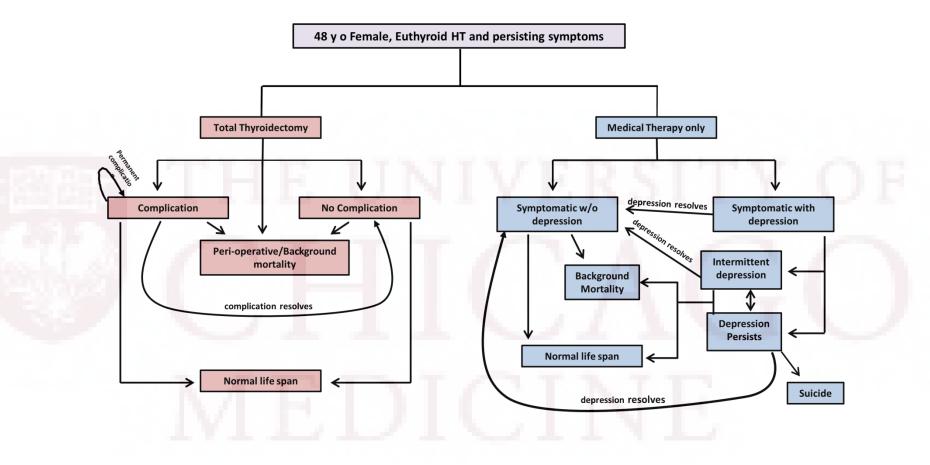
A Randomized Trial

Ivar Guldvog, MD, PhD; Laurens Cornelus Reitsma, MD*; Lene Johnsen, MD*; Andromeda Lauzike, MD; Charlotte Gibbs, MD; Eivind Carlsen, MD; Tone Hoel Lende, MD; Jon Kristian Narvestad, MD; Roald Omdal, MD, PhD; Jan Terje Kvaløy, PhD; Geir Hoff, MD, PhD; Tomm Bernklev, PhD†; and Håvard Søiland, MD, PhD†

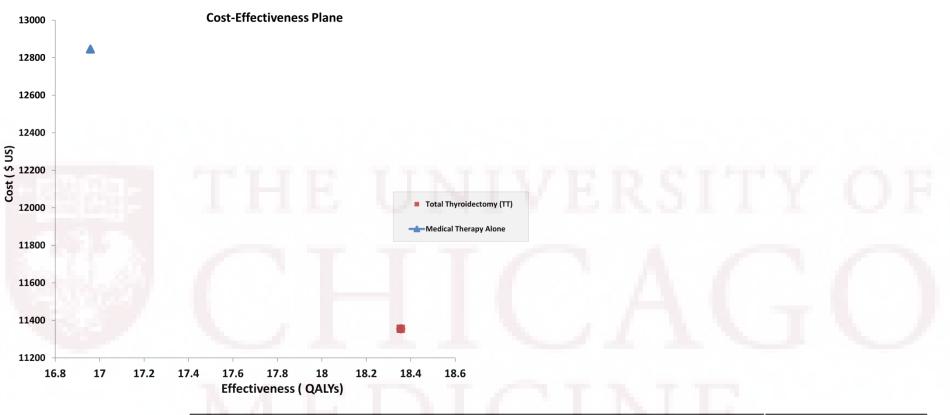
Trial Structure

- 150 patients randomized to surgery vs medical therapy
- Baseline QoL using validated questionnaires

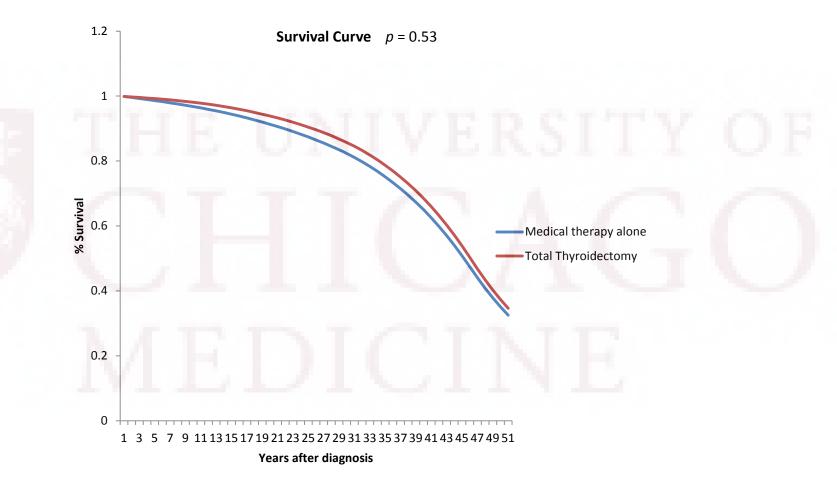
Results


- A significant improvement in the general health score after thyroidectomy compared to medical therapy alone.
- \downarrow TPO antibody titres in the thyroidectomy group vs no difference in med therapy group
- Higher than expected thyroidectomy complication rate.
 - ** similar to reported in retrospective studies.

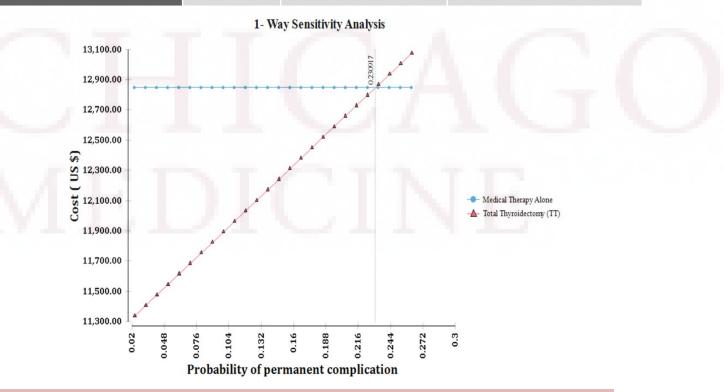
Surgical Complication	Trial Frequency	Frequency from other indication
Surgical wound infection	4.1%	<1%
Bleeding/wound hematoma	0%	1-2%
Hypoparathyroidism? permanent	4.1%	1-2%
Unilateral recurrent Laryngeal Nerve injury(temporary)	5.5	1-2%

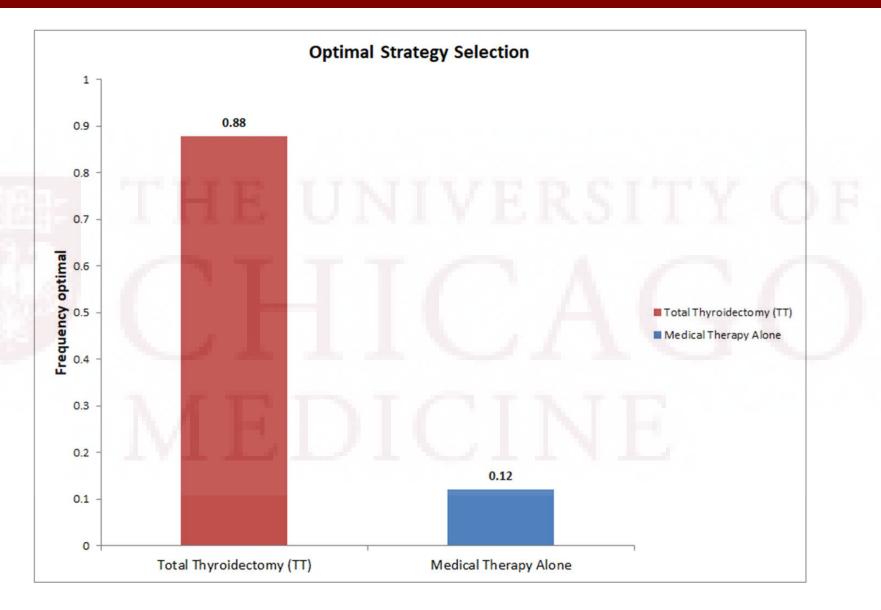

• Question: Is surgery for Hashimoto thyroiditis with persistent symptoms cost-effective?

COST EFFECTIVENESS ANALYSIS: MODEL STRUCTURE



Base Case Analysis (WTP \$100,000/ 0	QALY)		
	Cost	Effectiveness	Strategy status
Total Thyroidectomy	\$ 11,195	18.36 QALYs	Dominant
Medical therapy alone	\$ 12,845	16.96 QALYs	Dominated
Incremental cost and QALY	- \$ 1,490	1.4 QALYs	


Total thyroidectomy is less costly, more effective and so the dominant strategy



Parameter	Base Case Value	Cost effectiveness threshold	Order of Magnitude from base case
			value
Risk of any permanent complication after thyroidectomy	2.5%	23.1%	↑9.2x
Cost of uncomplicated thyroidectomy	\$6,154	\$8,035	↑1.3x
Annual cost of treating depression in HT patient	\$8,089	\$3,425	↑2.36 x
Age at Diagnosis	48 yrs	69.9 years	↑1.46 x

Thyroidectomy no longer cost effective if permanent complication rate 9 fold (2.5% to 23.1%)

REFERENCE

- 1. Logue JP, Hale RJ, Stewart AL, Duthie MB, Banerjee SS. Primary malignant lymphoma of the thyroid: a clinicopathological analysis. *International Journal of Radiation Oncology Biology Physics*. 1992;22(5).
- 2. Kumar R, Khosla D, Kumar N, Ghoshal S, Bera A, Das A, et al. Survival and failure outcomes in primary thyroid lymphomas: a single centre experience of combined modality approach. J Thyroid Res. 2013;2013:269034.
- 3. Chai YJ, Hong JH, Koo DH, et al. Clinicopathological characteristics and treatment outcomes of 38 cases of primary thyroid lymphoma: a multicenter study. Ann Surg Treat Res. 2015;89:295.
- 4. Vardell Noble V, Ermann DA, Griffin EK, Silberstein PT. Primary Thyroid Lymphoma: An Analysis of the National Cancer Database. *Cureus*. 2019;11(2):e4088. Published 2019 Feb 18. doi:10.7759/cureus.4088.
- 5. Jonklaas J, Bianco AC, Bauer AJ, Burman KD, Cappola AR, Celi FS, et al; American Thyroid Association Task Force on Thyroid Hormone Replacement. Guidelines for the treatment of hypothyroidism: Prepared by the American Thyroid Association Task Force on Thyroid Hormone Replacement. Thyroid. 2014;24:1670-751. DOI:<u>10.1089/thy.2014.0028.</u>
- 6. Ott J Promberger R Kober F Neuhold N Tea M Huber JC & Hermann M 2011. Hashimoto's thyroiditis affects symptom load and quality of life unrelated to hypothyroidism: a prospective case-control study in women undergoing thyroidectomy for benign goiter. Thyroid 21 161–167 doi.org/10.1089/thy.2010.0191.
- 7. Chiovato L, Latrofa F, Braverman LE, Pacini F, Capezzone M, Masserini L, et al. Disappearance of humoral thyroid autoimmunity after complete removal of thyroid antigens. Ann Intern Med. 2003; 139:346-51. DOI <u>10.7326/0003-4819-139-5 part 1-200309020-00010</u>.
- M. Djurovic, A.M. Pereira, J.W.A. Smit, O. Vasovic, S. Damjanovic, Z. Jemuovic, D. Pavlovic, D. Miljic, S. Pekic, M. Stojanovic, M. Asanin, G. Krljanac, M. Petakov, Cognitive functioning and quality of life in patients with Hashimoto thyroiditis on long-term levothyroxine replacement. Endocrine 62(1), 136–143 (2018). DOI:10.1007/s12020-018-1649-6.
- 9. Zivaljevic VR, Bukvic Bacotic BR, Sipetic SB, Stanisavljevic DM, Maksimovic JM, Diklic AD, et al. Quality of life improvement in patients with Hashimoto thyroiditis and other goiters after surgery: a prospective cohort study. Int J Surg. 2015;21:150-5. doi:10.1016/j.ijsu.2015.08.001.
- 10. Promberger R, Hermann M, Pallikunnel SJ, Seemann R, Meusel M, Ott J. Quality of life after thyroid surgery in women with benign euthyroid goiter: influencing factors including Hashimoto's thyroiditis. Am J Surg. 2014;207:974-9. doi:10.1016/j.amjsurg.2013.05.005.
- 11. Guldvog I, Reitsma LC, Johnsen L, Lauzike A, Gibbs C, Carlsen E, et al. Thyroidectomy Versus Medical Management for Euthyroid Patients With Hashimoto Disease and Persisting Symptoms: A Randomized Trial. Ann Intern Med. [Epub ahead of print 12 March 2019]170:453–464. doi: 10.7326/M18-0284.
- 12. McManus C, Luo J, Sippel R et al (2012) Is thyroidectomy in patients with Hashimoto thyroiditis more risky? J Surg Res 178:529– 532. doi: <u>10.1016/j.jss.2012.09.017</u>

