

THE UNIVERSITY OF CHICAGO MEDICINE & BIOLOGICAL SCIENCES

AT THE FOREFRONT OF MEDICINE*

30 y.o female with low cortisol Endorama Thaer Idrees M.D. First year adult endocrine fellow

AT THE FOREFRONT OF MEDICINE*

THE UNIVERSITY (

I have no relevant financial relationships with any commercial interests

OBJECTIVES

- Symptoms, signs and laboratory findings of primary and secondary adrenal insufficiency
- Common etiologies for secondary adrenal insufficiency
- Less common etiologies for secondary adrenal insufficiency

MEDICINE

HPI

30 yo F with PMH of STEMI (12/2017, balloon angioplasty to OM1 at NWH), R ulnar artery thrombosis, questionable hx of CVAs

CC: Diffuse bruising and abdominal pain

Consult: Low cortisol and low BP

- Generalized spontanouse bruising started 10 days PTA, predominantly on the legs. No trauma or falls, but on Plavix and stopped ASA recently
- Extreme epigastric pain started the day before along with severe headache and dizziness
- + photophobia, phonophobia, and nausea

PMH:

- STEMI 12/2017 NWM. OM1 s/p balloon angioplasty (unable to be stented)?dissection
- **R** ulnar arterial clot (after RUE swelling)
- Anxiety
- **Strokes**

PSH: None

PFH:

- Diabetes Maternal Grandfather
- High Cholesterol Maternal Grandfather Hypertension Maternal Grandfather
- Diabetes Paternal Grandfather
- High Cholesterol Paternal Grandfather
- High Cholesterol Father
- Hypertension Mother

- Heart Disease Maternal Grandfather
- Heart Disease Paternal Grandfather
- Hypertension Paternal Grandfather
- Hypertension Father
- Thyroid Disorder Maternal Grandmother

<u>SH</u>: Patient was born in India and raised in England. She completed graduate school in psychology

PTA Meds:SertralineClonazepamBusparWellbutrinAmbien PRNAmlodipine

<u>Allergies</u>: Colchicine, Norco

REVIEW OF SYSTEMS

- Constitutional: Positive for malaise/fatigue and weight loss. Negative for diaphoresis and fever
- HENT: Negative for ear discharge, hearing loss and tinnitus
- Eyes: Negative for blurred vision and double vision
- Respiratory: Negative for cough, sputum production and shortness of breath
- Cardiovascular: Negative for palpitations and claudication
- Gastrointestinal: **Positive for abdominal pain**, **nausea and vomiting.** Negative for diarrhea
- Genitourinary: Negative for dysuria
- Musculoskeletal: Positive for back pain and myalgias. Negative for falls
- Skin: Negative for rash
- Neurological: Negative for dizziness, tingling, tremors, speech change and headaches
- Endo/Heme/Allergies: Negative for environmental allergies
- Psychiatric/Behavioral: Negative for depression. The **patient is nervous/anxious** All other systems reviewed and are negative

PHYSICAL EXAM

• BP **90/53** | Pulse 80 | Temp (98.4 °F) | Resp 16 | Ht (5' 3") | Wt (128 lb) | SpO2 96% | BMI 22.68 kg/m2

- Constitutional: **in moderate** distress
- HEENT: EOMI, oropharynx clear
- Neck: supple, no thyromegaly, no acanthosis nigricans
- Cardiovascular: regular rate, no extra heart sounds
- Pulmonary/Chest: good respiratory effort, clear to auscultation bilaterally
- Abdomen: bowel sounds present, soft, **tender**, no violaceous straie, **bruises**
- Musculoskeletal: moving all extremities, **bruises different ages.**
- Neurological: sensation intact to light touch, strength 4/5 symmetrical
- Skin: warm, dry
- Psychiatric: not agitated, **anxious**

Adrenal crisis?

WBC	5.3
RBC	4.06
Hemoglobin	12.2
Hematocrit	36.8
MCV	90.6
MCH	30.0
MCHC	33.2
RBC Dist Width	13.5
Platelet Count	275
Mean Platelet Volume	13.0 🔺

- CK 201
- Lipase 86
- Cortisol 0.7 (6 AM)
- Cortisol at NWMH 3 months PTA: 17

LABS

BASIC & COMPREHENSIVE		
Glucose, Ser/Plasma	110 *	•
Sodium	143	
Potassium, Ser/Plasma	3.5	
Chloride	112	•
Carbon Dioxide	23	
Anion Gap	8	
BUN	10	
Creatinine	0.6	
GFR Estimate (Calc)	117 *	
Calcium	8.1	-
Inorganic Phosphate	3.9	
Magnesium	2.0	
Total Protein	5.4 *	-
Albumin	3.2 *	-
Bilirubin, Total	0.1	
Bilirubin, Conjugated	<0.1	
Bilirubin, Unconju	0.1	
Alk Phos, Serum	69	
AST (SGOT)	22	
ALT (SGPT)	20	
014		

ACUTE ADRENAL INSUFFICIENCY

Diurnal rhythm	Characteristics	Primary	Secondary
Stressors (hypoglycaemia, hypotension, fever, trauma,	N, V, and abdominal pain	Prominent	Less common
Surgery)	Shock and low BP	XX	Х
Pituitary	Hyperpigmentation (if acute on chronic)	XX	TC
Modified from Williams Textbook of Endocrinology, 12 th	Fatigue and weakness	XX	XX
Ed, 2011	Low BG	XX	XX
Going back to the patient,	Low Na	XX	X
what is the next step?	High K	XX	

LABS

		1	2		3	4		5			
Ref. Range and	9/2 1 Units	29/2018 0700	9/29/2018 0630	9/29 0)/2018 9 622	9/28/20 [/] 1123	18 9	/28/2018 0602			
Cortisol Latest Units: up	g/dL	10.1 *	6.9 *		0.7 *			0.7 *			
ACTH Latest Range:	<52 pg/mL		-		10.1	1	.1				
Differenti Diagnosis	al ?		Otl	ner la	abs?				Does r abnorr	eport menstru nalities for last months	al 3
	Ref. Range an	d Units	10/2	/2018 747	9/29/2018 0630	9/	28/2018 0602	11			10/2/2018
THYROID FUNCTION										Ref. Range and Units	0747
Thyroxine, Free	Latest Range:	0.9 - 1.7 ng/dl		0.74 *	-		0.81 *	-	Estradiol Serum	Latest Units: po/mL	46 *
Triiodothyronine,	Latest Range:	80 - 195 ng/dl	L		81				Luteinizing Hormone	Latest Unite: u[i] II/m]	42.2*
Thyroxine, Total	Latest Range:	5.0 - 11.6 ug/o	iL		4.1	-			Euternizing Hormone	Latest Onits. u[IO]/IIIL	15.5
Thyrotropin	Latest Range:	0.30 - 4.00 m	cU/mL	2.06			0.90		FSH	Latest Units: u[iU]/mL	6.6 *

Prolactin Latest Range: 4.8 - 23.3 ng/mL 19.72

HOSPITAL COURSE

Headache

- Admitted few months ago with acute on chronic headache after a stroke. Reported only Dilaudid and morphine work
- Multiple admissions in the past at different institutions with headache that required Diluadid
- <u>Neurology</u>: Topamax (patient did not use)

Bruising

- <u>Hematology</u>: negative work up including PT/PTT, fibrinogen, Factor VIII, paraneoplastic panel, vWD panel, D-dimer
- Hypercoagulable work up has been negative for anticardiolipin, vWF assay, anti-beta2glycoprotein antibodies, lupus anticoagulant testing, normal PTG20210A and factor V, Protein C and S
- The only positive work up was high ANA (vascular purpura?) → consult Rheumatology to r/o vasculitis

HOSPITAL COURSE

Rheumatology

- She had positive ANA 1:1280, but negative for dsDNA, anti-histone, Jo1, RF, ANCA, anticardiolipin IgG and IgM, B2GP IgG IgA IgM
- Less likely systemic vasculitis, no end-organ damage, no fever/ weight loss/ elevation of inflammatory markers to suggest an ongoing inflammatory process

Psych

• Significant domestic violence

SECONDARY ADRENAL INSUFFICIENCY

The most common causes of secondary adrenal insufficiency are:

- Abrupt cessation of high-dose glucocorticoid therapy
- Correction (cure) of hypercortisolism (Cushing's syndrome)

Hypothalamic diseases

Mass lesions – Benign (craniopharyngiomas) and malignant tumors (metastatic from lung, breast, etc)

Radiation – For CNS and nasopharyngeal malignancies

Infiltrative lesions – Sarcoidosis, Langerhans cell histiocytosis

Infections – Tuberculous meningitis

Other – Traumatic brain injury, stroke

Pituitary diseases

Mass lesions - Pituitary adenomas, other benign tumors, cysts

Pituitary surgery

Pituitary radiation

Infiltrative lesions – Hypophysitis, hemochromatosis

Infection/abscess

Infarction - Sheehan syndrome

Apoplexy

Genetic mutations

Empty sella

OPIOIDS & ADRENAL INSUFFICIENCY

- Opiates may suppress the hypothalamicpituitary-adrenal axis
- Eleven human studies suggested that longterm administration of opioids (oral, intravenous, or intrathecal) leads to suppression of the HPA axis
- Naloxone, an opioid receptor antagonist with a higher affinity for the μ receptor, given in high doses (>10 mg) to healthy volunteers→ increased cortisol levels and augmented corticotropin response to (CRH) stimulation

American College of Neuropsychopharmacology

Morphine	Allolio et al, ⁴ 1987	6 Males and I female (placebo- controlled)	Oral	Single dose	30-mg slow release	Reduction in cortisol (124 vs 275 nmol/L), corticotropin (1.2 vs 2.9 pmol/L), and β-endorphin (28 vs 47 pmol/L) with
	Palm et al, ¹¹ 1997	5 (Double-blind, randomized, placebo- controlled, crossover)	Oral	I wk	Day 1, 60 mg; day 2, 120 mg; day 3-7, 180 mg	decreased peak response to CRH Significant reduction in cortisol and corticotropin (24 vs 10 pg/mL) with reduced response in CRH stimulation (in 2 patients tested)
	Abs et al, ¹² 2000	73 Received opioids and 20 chronic non-cancer pain—matched controls	Intrathecal	Long-term (mean, 26.6±16.3 mo)	Mean daily 4.8±3.2 mg (morphine, n=68; hydromor-phone, n=5)	Decreased urinary free cortisol (36 vs 50.7 μg/L) and a reduced peak cortisol after ΠT (245.4 vs 300.8 μg/L)
Fentanyl	Oltmanns et al, ¹³ 2005	I (Case report)	Patch	2 у	480 mg	Adrenal crisis with reduced response to CRH
	Schimke et al, ¹⁴ 2009	I (Case report)	Patch	7 mo	180 mg	Secondary adrenal insufficiency with failure of cortisol to
						increase following corticotropin stimulation
Tramadol	Debono et al, ¹⁵ 2011	I (Case report)	Oral	3 у	15 mg	Low basal cortisol (54

Opioid	Reference, year	No. of participants	MOA	Duration	Dose (MEDD) ^b	Effect on HPA
Mixed opioids	Gibb et al, ¹⁷ 2016	48 Patients with chronic noncancer pain (25 female and 23 male)	Oral: tramadol, oxycodone, morphine, or dihydroco-deine Patch: fentanyl or buprenor-phine	Long-term (at least 6 mo use)	Median, 68 mg (40-153 mg)	4 (8.3%) patients had a basal cortisol level of <100 nmol/L, 3 of whom had inadequate response to corticotropin
	Merdin et al, ¹⁸ 2016	20 Patients with chronic cancer- associated pain	Not specified	Long-term (≥1 mo use)	Median, 180 mg/ d (10-420 mg/d)	stimulation test Serum cortisol level was lower than the normal reference range in 3 patients (15%) and higher than normal range in 8 (40%) (reference range, 4.3-22.4 µg/ dL). Corticotropin level was normal in 17 of 18 patients (94.5%) (reference
	Rhodin et al, ¹⁹ 2010	39 Patients with chronic noncancer pain, 20 chronic non-	Methadone and slow-release morphine or oxycodone	Long-term (>I y)	Mean in males treated with methadone, 1596 mg; and in females. 1322 mg	Peak corticotropin level following CRH was higher in the opioid-treated
		cancer controls				group than in controls (73.7 IE/L vs 39.2 IE/I) with no

difference in basal or peak cortisol level

CONCLUSION

- Available data from small heterogeneous studies suggest that 9% to 29% of patients receiving long-term treatment with opiates have development of adrenal insufficiency
- Careful consideration of OIAI in any patient receiving long term opiate therapy who manifests symptoms and signs suggestive of adrenal insufficiency

MEDICINE

BACK TO THE PATIENT

Imaging loading.....

MRI BRIAN WO

MRI BRIAN WO

MRI Brain with and without Contrast <u>3 months PTA</u> Northwestern Memorial HealthCare

IMPRESSION:

1. Moderate volume loss of the frontal lobes, the parietal lobes, and the brainstem is superimposed on a background of mild diffuse volume loss.

2. Findings compatible with minimal chronic small vessel ischemic disease in the white matter of the frontal lobes and a small, old infarct compatible with a lacune in the inferior right parietal lobe.

IMPRESSION:

1. Disproportionate volume loss in the bilateral frontal lobes may indicate a neurodegenerative or developmental condition

2. Nonspecific small lesions (lacunar infarcts) in the bilateral frontal lobe white matter

3. No evidence of acute intracranial hemorrhage, mass, or acute infarct

MRI PITUITARY

The patient

Normal MRI from literature

IMPRESSION: no discernible pituitary lesions

De Groot LJ, Chrousos G, Dungan K, et al., editors. South Dartmouth (MA):

NEUROSURGERY

- The patient's pituitary gland is <u>small</u> <u>asymmetric</u> and <u>heterogenous</u>, which consists with **pituitary atrophy**
- This is likely secondary to a remote pituitary infarct or resolved hypophysitis
- *Given her cardiovascular risk factors, remote pituitary infarct is more likely*
- While this could explain hypopituitarism, there is no actionable structural lesion or other surgical pathology, no evidence of tumor

PITUITARY INFARCTION (PITUITARY APOPLEXY)

- Pituitary adenomas are particularly prone to hemorrhage and necrosis
- Risk factors such as hypertension, medications, major surgeries, coagulopathies either primary or following medications or infection, head injury, radiation
- Vascular changes after pituitary irradiation often result in chronic hypoperfusion of the pituitary gland
- Even sometimes with coughing, or sneezing! (bleeding into an adenoma)

MEDICINE

PITUITARY ATROPHY

Empty Sella syndrome

- Increased pressure in the suprasellar subarachnoid space or by reduction in the size of the pituitary gland
- Shrinkage of the pituitary gland may occur after post-partum pituitary necrosis (Sheehan's syndrome) or pituitary infarction in patients with vascular diseases, diabetes, increased intracranial pressure, head injury, meningitis, or cavernous sinus thrombosi

Empty Sella Syndrome JK Agarwal, RK Sahay, SK Bhadada, Vijay Sekhar Reddy, NK

HYPOPHYSITIS

	Primary forms
	Lymphocytic (autoimmune)
	Granulomatous
5.0	Xanthomatous
1	Secondary forms
ial	Local lesions
	Germinomas
or	Rathke's cleft cysts
	Craniopharyngiomas
	Pituitary adenomas
y is	Systemic diseases
	Sarcoidosis
ella	Wegner's granulomatosis
	Langerhans cell hisitocytosis
	Syphilis
	Tuberculosis
	immunotherapy

- AI: inflammatory infiltrate of the pituitary gland
- Symptoms of sellar compression, represented by headache and visual disturbances, are the most common and usually the initial complaint
- Symptoms are due to a partial or complete deficit of the anterior pituitary hormones, mainly ACTH followed by TSH, gonadotropins
- In contrast to other forms of hypopituitarism, ACTH deficiency is most common in patients with lymphocytic hypophysitis
- Over time the pituitary gland may atrophy, leaving an empty sella

REVIEW

All these patien

Pituitary Apoplexy

Claire Briet, Sylvie Salenave, Jean-François Bonneville, Edward R. Laws, and Philippe Chanson

	Angiography	Reichenthal, 1980) 57		40	M	AV		Carotid angiography
		Suga, 1996	59		29	F F	PRL		Cerebral angiography
		Louwerens, 1996	56		32	M	GH		Cerebral angiography
	and the second	Skljarevski, 2003	58		66	M	NF		Coronarography
these patients	Closed head	Holness, 1983	95	39	м	NF		Minor h	ead trauma motor vehicle
ad adenoma	trauma	Tamasawa, 1988	99	34	М	GH		Fall from the back of a t	
		Itoyama, 1990	97	45	М	NA		Fall 2 m	eters
		Uchiyama, 1999	100	66	м	NA		Fall 15 r	neters
	Y LL	Uchiyama, 1999	100	60	F	NA		Mild (fa	ll from his height)
		Horie, 2002	96	56	F	NA		Traffic c	ar accident
		Smidt, 2007	98	30	М	NA		Minor h	ead trauma
		Dev, 2007	94	40	М	necrosis		Mild cra	nial trauma (road traffic)
		Bao, 2007	93	79	M	Not opera	ted	Mild cra	nial trauma (fall)

Briet et al., endocrine Reviews, Volume 36, Issue 6, 1 December

BRAIN INJURY AND HYPOPITUITARY

- Anterior-pituitary dysfunction is more common than posteriorpituitary dysfunction in survivors of TBI
- In a meta-analysis, Schneider et al included 1,015 TBI patients from ten cross-sectional and four prospective studies the pooled prevalence of anterior hypopituitarism has been reported as 27.5% (95% confidence interval 22.8–28.9)

Pathophysiology

- Long superior hypophyseal arteries provide the anterior pituitary gland with 70–90% of its blood supply (vulnerable to mechanical trauma, intracranial hypertension, low cerebral blood flow and brain swelling)
- Pituitary glands confinement within the bony sella

Hillary et al., Sur. (Oxford)2017

BIOTIN AND CORTISOL

 <u>https://www.healthcare.uiowa.edu/path_handbook/Appendix/Chem/BiotinImmunoassay</u> <u>Tables.pdf</u>

MEDICINE

BACK TO OUR PATIENT

Treatment plan

- Hydrocortisone 40 mg in AM and 20 mg in PM
- Decreased next day to 20 mg in AM and 10 mg in PM (blood pressure slightly improved)
- Started on Synthroid 25 mcg daily
- Was discharged on maintenance dose of hydrocortisone (20,10) and Synthroid
- Lost to follow up and missed endocrine appointment

REFERENCES

- Evanson J. Radiology of the Pituitary. [Updated 2016 May 5]. In: De Groot LJ, Chrousos G, Dungan K, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-.
- Grossman AB. Clinical Review#: The diagnosis and management of central hypoadrenalism. J Clin Endocrinol Metab. 2010 Nov;95(11):4855-63. doi: 10.1210/jc.2010-0982. Epub 2010 Aug 18. Review. PubMed PMID: 20719838.
- Donegan D, Bancos I. Opioid-Induced Adrenal Insufficiency. Mayo Clin Proc. 2018 Jul;93(7):937-944. doi: 10.1016/j.mayocp.2018.04.010. Review. PubMed PMID: 29976376.
- UpTaodate: Causes of secondary and tertiary adrenal insufficiency in adults, Author:Lynnette K Nieman, MD
- Molimard M, Girodet PO, Pollet C, Fourrier-Réglat A, Daveluy A, Haramburu F, Fayon M, Tabarin A. Inhaled corticosteroids and adrenal insufficiency: prevalence and clinical presentation. Drug Saf. 2008;31(9):769-74. PubMed PMID: 18707191.
- Dusick, Joshua R et al. "Pathophysiology of hypopituitarism in the setting of brain injury" Pituitary vol. 15,1 (2012): 2-9.
- Biousse V, Newman NJ, Oyesiku NM Precipitating factors in pituitary apoplexy Journal of Neurology, Neurosurgery & Psychiatry 2001;71:542-545.
- JK Agarwal*, RK Sahay**, SK Bhadada**, Vijay Sekhar Reddy**, NK Agarwa, Empty Sella Syndrome,
- Morton G. Burt, Ken K.Y. Ho, in Endocrinology: Adult and Pediatric (Seventh Edition), 2016
- Javed Z, Qamar U, Sathyapalan T. Pituitary and/or hypothalamic dysfunction following moderate to severe traumatic brain injury: Current perspectives. Indian J Endocrinol Metab. 2015 Nov-Dec;19(6):753-63. doi: 10.4103/2230-8210.167561. Review. PubMed PMID: 26693424; PubMed Central PMCID: PMC4673802.
- Dahan MH, Tan SL. A primer on pituitary injury for the obstetrician gynecologist: Simmond's disease, Sheehan's Syndrome, traumatic injury, Dahan's Syndrome, pituitary apoplexy and lymphocytic hypophysitis. Minerva Ginecol. 2017 Apr;69(2):190-194. doi: 10.23736/S0026-4784.16.03956-3. Epub 2016 Jul 13. Review. PubMed PMID: 27405776.

THANK YOU Questions/comments?