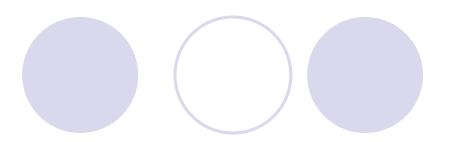
# 51-year-old Woman consulted for Hypertriglyceridemia

EDI Sharon H. Chou, MD Endorama 3/29/2012

## **History of Present Illness**

Patient is a 51-year-old woman with past medical history significant for cognitive delay, dyslipidemia, diabetes mellitus type 2, and hypothyroidism who presented to outpatient clinic for consultation on hypertriglyceridemia.
Caregivers were concerned about her weight, which has been fluctuating. Currently, she is described to be hungry all the time, although her weight in clinic was 95.3 pounds.
Caregivers were also concerned about her "bone health" although there was no history of fractures.

## History of Present continued


### Diet:

- Breakfast: waffles, pancakes, oatmeal, cold cereal, yogurt
- Lunch: deli sandwich, cream cheese
- O Dinner: lasagna, pizza, chicken, occ. fish
- Snacks: applesauce, sugar free pudding, apples, vegetables
- O Desserts: angel food cake, birthday cake
- O Beverages: diet soda, coffee

### Exercise:

- Walk 30 minutes once a week
- Water aerobics once a week
- Bowling on Saturdays

## History continued



- Past Medical History: OHypertriglyceridemia
  - **O**yslipidemia
  - O Diabetes mellitus type 2
  - Hypothyroidism
  - Cognitive delay
- Allergies: Penicillin

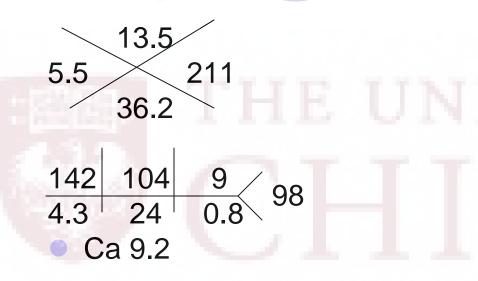
# History cont.

- Medications:
  - Aspirin 81 mg QDay
  - Atenolol 25 mg QDay
  - Lovaza 2 g BID
  - Metformin 500 mg QDay
  - Levothyroxine 125 mcg QDay
  - Alprazolam 1 mg QHS
  - O Asenapine 10 mg QHS
  - Ocuvite one tablet daily
  - Tab-a-vite tab/iron one daily
  - Docusate 100 mg BID
  - Fluticasone 50 mcg 2 sprays daily

- O Tylenol PRN
- Naproxen 220 mg BID PRN
- APAP/codeine PRN
- Bacitracin PRN
- Genaton Suspension PRN
- Guaifenesin Syrup DM PRN
- Hem-Prep cream PRN
- Loperamide PRN
- Prochlorperazine 10mg PRN
- Pseudoephedrine 30 mg PRN
- O Throat Lozenges PRN

## History continued

- Social History:
  - Has 2 state caregivers.
  - Lives at Elmwood Home with 4 other women.
  - Meals are provided.
  - The refrigerator and cabinets are locked at night.
- Family History:
  - Mother and father both deceased with history of coronary artery disease.
  - Brother died at a young age from myocardial infarction.


## ROS:

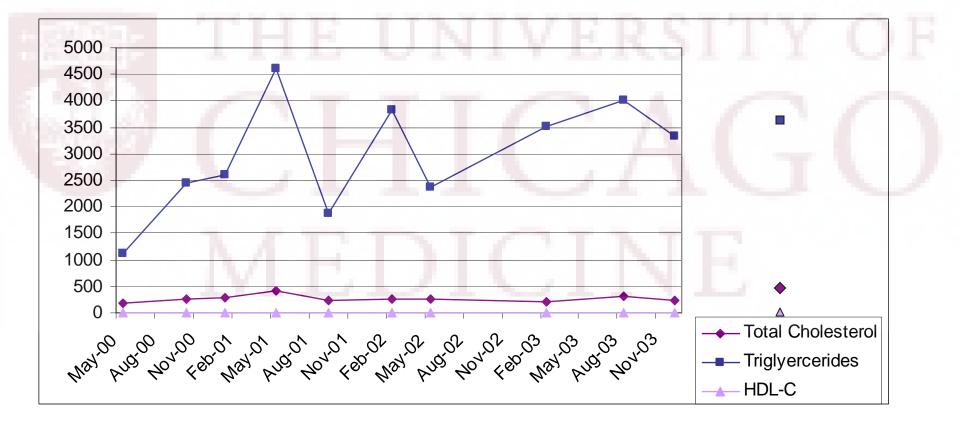
- No abdominal pain, nausea/vomiting, bowel problems.
- Erratic chest pain occurring once a month.
- No dyspnea on exertion.
- Chronic knee and hip pain.

## Physical Exam

- Vitals: 61.5 inches tall, weight is 43.2 kg or 95.2 pounds, BMI 17.7 kg/m<sup>2</sup>, blood pressure 124/76, pulse is 53, POC glucose 95 (fasting)
  - General: reasonably well-appearing woman in no acute distress.
  - HEENT: Pupils are equal, round, and reactive to light. Extraocular muscles intact. There is no xanthelasmas. No arcus senilis. Ophthalmoscopic exam did not reveal obvious lipemia retinalis. Oropharynx is clear. She has moist mucous membranes. Tonsils are pink.
- Neck: No thyromegaly, no thyroid nodularity. No palpable lymphadenopathy in the neck.
- Respiratory: Clear to auscultation bilaterally.
- Cardiovascular: Regular rate and rhythm, S1 and S2. No murmurs, rubs, or gallops.
- Abdomen: soft, nontender, nondistended with normoactive bowel sounds.
- Skin: Only remarkable for obvious lack of sun exposure. No eruptive xanthomas.
- Extremities: No xanthomas of tendons.
- Neuro: Cranial nerves II-XII intact. Deep tendon reflexes 2+ bilaterally upper and lower extremities. No insight. Can answer direct questions but requires refocusing. Able to give a pretty good history.

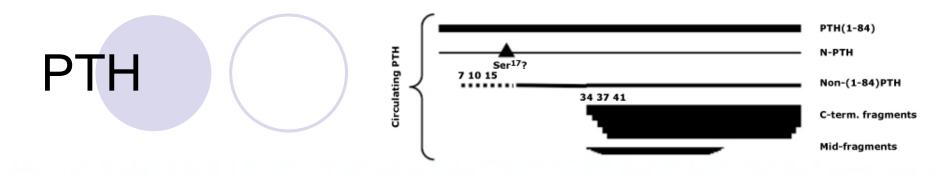
## Laboratory Data




- Albumin 3.7, total protein 8.1
- Total bili 0.1, alk phos 162, AST 39, ALT 12
- Lipase 5

Total cholesterol 522 HDL-C 44 Direct LDL-C <3 Triglycerides 3610 Apolipoprotein A-1 could not be performed. Apolipoprotein B-100 53 mg/dL (goal < 80)

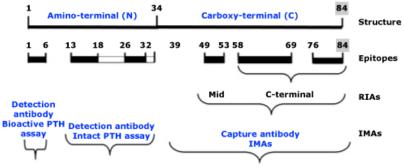
Apolipoprotein E isoform 2/3


HgbA1c 5.2% Urine albumin:creatinine 4.7

## **Cholesterol History**



## Laboratory Data


TSH 2.44
TSH 3.60
fT4 0.72
PTH 56 (15-75)
Ca 9.2
25 OH vitamin D 9
25 OH vitamin D 9



PTH 1-84, biologically active hormone 5-30% Half-life of 2-4 minutes **C**-terminal fragments 70-95% O Half-life 5-10x longer than PTH 1-84, cleared by kidneys N-terminal fragments Small percentage

Fuleihan and Juppner. UpToDate. Parathyroid hormone assays and their clinic use.

# PTH assays



- 1<sup>st</sup> generation assay: radioimmunoassay
  - Measures predominantly PTH fragments
  - Polyclonal abs against epitopes in the mid- or C-terminal portion.
- 2<sup>nd</sup> generation assay, intact PTH assay: immunometric
  - Measures PTH 1-84 and other large C-terminal PTH fragments
    - Capture antibody against C-terminal portion (39-84) and detection antibody against N-terminal portion (13-34)
- 3<sup>rd</sup> generation assay, bioactive PTH 1-84 assay: immunometric
  - Measures only PTH 1-84
  - Capture antibody against C-terminal portion and detection antibody against N-terminal portion (1-4)

Fuleihan and Juppner. UpToDate. Parathyroid hormone assays and their clinic use.

# What factors can interfere with PTH measurement?

- Renal failure
  - Increased due to presumed decrease in breakdown and clearance by the kidney
  - Heterophile antibodies
    - Falsely elevated
    - Usually a problem in patients treated with drugs containing non-human antibodies
  - Rheumatoid factor
  - Hemolysis
    - Release of proteolytic enzymes from erythrocytes
- Insufficient filling of EDTA tubes
- Medications:
  - Increase: ?propofol
  - O Decrease: alteplase, biotin, ?propofol

Rodgers and Lew. <u>Endocr Pract.</u> 2011 Mar-Apr;17 Suppl 1:2-6. Glendenning et al. <u>Clin Chem.</u> 2002 Mar;48(3):566-7. Schiller et al. <u>Nephrol Dial Transplant.</u> 2009 Jul;24(7):2240-3. Sippel et al. <u>Surgery.</u> 2004 Dec;136(6):1138-42. Meany et al. <u>Clin Chem.</u> 2009 Sep;55(9):1737-9.

## Assessment & Plan

Hypertriglyceridemia: Hyperchylomicronemia

- Thought to be due to homozygous lipoprotein lipase deficiency and/or apoCII deficiency
- Lovaza 2 gram BID
- Very low fat diet (<10% of total calories)</li>
  - Fats from medium chain fatty acids (coconut oil and palm kernel oil)
- Diabetes mellitus type 2: metformin

#### Hypothyroidism:

Increase levothyroxine to 137 mcg daily given profound hypertriglyercidemia

#### Elevated PTH:

- On ultracentrifuged specimen
- Possibly due to vitamin D deficiency and likely low dietary calcium intake
- Ergocalciferol 50,000 IU weekly x 12 weeks + vitamin D3 2000 IU daily
- Calcium carbonate 500 mg BID
- DEXA scan recommended

## Follow up visit

2/16/12
Ca 9.4
Ca 9.2
PTH 34
25 OH vit D 46
25 OH vit D 46
TSH 1.17
TSH 3.60
fT4 1.22
fT4 0.87

## Follow up visit

- Medication list:
  - Aspirin 325 mg one daily
  - Atenolol 25 mg daily
  - Isosorbide mononitrate 30 mg ER daily
  - Levothyroxine 137 mcg daily
  - Metformin 500 mg daily
  - Lovaza 2 grams BID
  - Ergocalciferol 50,000 IU once weekly
  - Vitamin D 1000 IU daily
  - Ocuvite tablet one daily
  - Tab-a-vite/iron one daily
  - Doc-q-lace 100 mg twice daily
  - Alprazolam 1 mg QHS
  - Saphris 10 mg QHS
  - Proctozone CRE 2.5% cream TID to skin
  - Fluticasone 50 mcg 2 sprays each nostril daily

- Tylenol PRN
- APAP/codein PRN
- Bacitracin PRN
- Genaton Suspension PRN
- Guaifenesin Syrup DM PRN
- Hem-Prep cream PRN
- Loperamide PRN
- Prochlorperazine 10mg PRN
- Sudogest Tab 30 mg PRN
- Throat Lozenges PRN
- Changes:
  - Addition of isosorbide mononitrate
  - Addition of vitamin D
  - Increase in levothyroxine dose
  - Discontinuation of Naproxen

## Follow up visit

2/16/12 11/3/11 Ca 9.2 ○Ca 9.4 **OPTH 173 PTH 34** 25 OH vit D 46 ○ 25 OH vit D 9 **OTSH 3.60 OTSH 1.17** OfT4 1.22 OfT4 0.87 Total chol 522 O Total chol 577 OHDL 44 OHDL 44 ○Trig 4557 OTrig 3610

## Hyperchylomicronemia

#### Table 4. Familial Forms of High Triglycerides

|                                                                        | Inheritance/Population<br>Frequency                  | Pathogenesis                                                                                                                                                   | Typical Lipid/Lipoprotein Profiles                                                                                                                                                 | Comments                                                                                                                                                                               |
|------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rare genetic syndromes<br>presenting as<br>chylomicronemia<br>syndrome | THE                                                  | UNIV                                                                                                                                                           | EKSI                                                                                                                                                                               | IY OF                                                                                                                                                                                  |
| LPL deficiency (also<br>known as familial type I)                      | Autosomal recessive; rare<br>(1 in 10 <sup>6</sup> ) | Increased chylomicrons due to very low<br>or undetectable levels of LPL;<br>circulating inhibitor to LPL has been<br>reported                                  | Homozygotes: TG-to-cholesterol ratio<br>10:1; TG >1000 mg/dL; increased<br>chylomicrons                                                                                            | Homozygous mutations cause lipemia<br>retinalis, hepatosplenomegaly,<br>eruptive xanthomas accompanying<br>very high TG. CAD believed<br>uncommon, but cases reported                  |
| Apo CII deficiency                                                     | Autosomal recessive; rare                            | Increased chylomicrons due to absence<br>of needed cofactor, Apo CII                                                                                           | Homozygotes TG-to-cholesterol ratio<br>10:1; TG >1000 mg/dL; increased<br>chylomicrons<br>Obligate heterozygotes with normal<br>TG despite apo CII levels ≈30% to<br>50% of normal | Attacks of pancreatitis in<br>homozygotes can be reversed by<br>plasmapheresis; xanthomas and<br>hepatomegaly much less common<br>than in LPL deficiency                               |
| Apo AV homozygosity                                                    | Rare                                                 | Mutations in the <i>APOA5</i> gene, which<br>lead to truncated apo AV devoid of<br>lipid-binding domains located in the<br>carboxy-terminal end of the protein | Homozygotes: TG-to-cholesterol ratio<br>10:1; TG >1000 mg/dL; increased<br>chylomicrons                                                                                            | Apo A5 disorders can form familial<br>hyperchylomicronemia with vertical<br>transmission, late onset, incomplete<br>penetrance, and an unusual<br>resistance to conventional treatment |
| GPIHBP1                                                                | Rare; expressed in childhood                         | Mutations in <i>GPIHBP1</i> may reduce<br>binding to LPL and hydrolysis of<br>chylomicron triglycerides                                                        | TG-to-cholesterol ratio 7:1; TG<br>>500 mg/dL; increased<br>chylomicrons partially responsive to<br>low-fat diet                                                                   | May have lipemia retinalis and<br>pancreatitis; eruptive xanthomas not<br>reported                                                                                                     |

<u>Circulation.</u> 2011 May 24;123(20):2292-333. Epub 2011 Apr 18.

## Dietary Management of Hypertriglyceridemia

#### Table 11. Effects of Nutrition Practices on Triglyceride Lowering

| Nutrition Practice                                                                                    | FG-Lowering Re                   | sponse, %                                                | 6       |                                                           |     |                                                            |     |
|-------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------|---------|-----------------------------------------------------------|-----|------------------------------------------------------------|-----|
| Weight loss (5% to 10% of body weight)                                                                | 20                               |                                                          | 1.1.1.1 |                                                           |     |                                                            |     |
| Implement a Mediterranean-style diet vs a low-fat diet                                                | 10–15                            | 5                                                        |         |                                                           |     |                                                            |     |
| Add marine-derived PUFA (EPA/DHA) (per gram)                                                          | 5–10                             | Apo E2<br>Response                                       |         | Apo E3<br>Response                                        |     | Apo E4<br>Response                                         |     |
| Decrease carbohydrates                                                                                | Genotype                         | 2/2                                                      | 2/3     | 3/3                                                       | 2/4 | 3/4                                                        | 4/4 |
| 1% Energy replacement with MUFA/PUFA                                                                  | Population<br>Frequency          | 1%                                                       | 10%     | 62%                                                       | 2%  | 20%                                                        | 5%  |
| Eliminate <i>trans</i> fats<br>1% Energy replacement with MUFA/PUFA                                   | Fish Oil <sup>1</sup>            | ₽₽TG                                                     |         | ↓ TG<br>↓ small dense LDL<br>↑ HDL                        |     | ↓TG<br>↓↓ small dense LDL<br>↓HDL ↑↑ LDL                   |     |
| TG indicates triglyceride; PUFA, polyunsaturated fa taenoic acid; DHA, docosahexaenoic acid; and MUFA | Moderate Eat                     | ↓ LDL<br>↑ small dense LDL<br>↔ LDL<br>↔ small dense LDL |         | ↓↓ LDL<br>↔ small dense LDL<br>↓ LDL<br>↓ small dense LDL |     | ↓↓↓ LDL<br>↓ small dense LDL<br>↓LDL<br>↑↑ small dense LDL |     |
| acid.                                                                                                 | Moderate<br>Alcohol <sup>4</sup> | THDL ↓LDL                                                |         | <b>†</b> HDL                                              |     | ↓HDL ↑LDL                                                  |     |
|                                                                                                       | Effective Drug<br>Response       | Atorvastatin<br>Pravastatin<br>Lovastatin                |         | No distinction                                            |     | Probucol<br>Simvastatin                                    |     |

<u>Circulation.</u> 2011 May 24;123(20):2292-333. Epub 2011 Apr 18. Berkeley HeartLab. Apolipoprotein E Genotype for Cardiovascular Disease Management.

## Sample menu of very low fat diet

#### Breakfast:

- 6 oz tomato juice
- 4 inch oat bran bagel, 1 tbsp fat-free cream cheese
- 1.5 oz liquid egg subsitute
- 8 oz skim milk

#### Lunch:

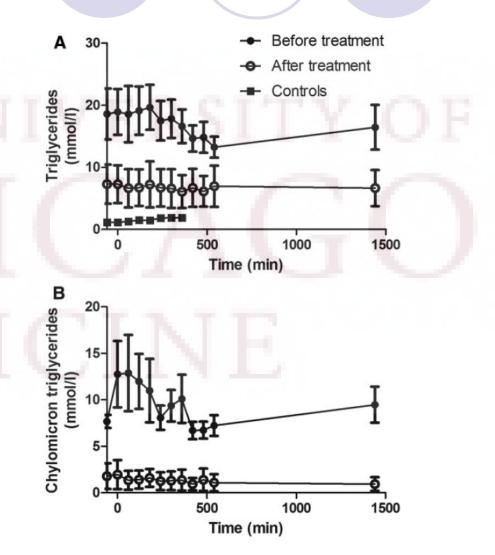
- Turkey sandwich: 2 oz lean turkey, small whole wheat pita, lettuce, tomato, sprouts, 2 tsps fat-free mayo, 1 tsp mustard
- 1 cup carrots
- ½ cup pineapple chunks
- 8 oz skim milk

Dinner:

- 4 oz chicken breast baked in tomato sauce with 1 cup pasta
- Mixed green salad with carrots, cucumbers, tomatoes
- 2 slices of french bread, 1 tsp reduced fat margarine
- Cooked apple with cinnamon and sugar
- Water, tea, or coffee
- Nutrition: 1,635 calories; protein: 110 g (26% of calories); carbohydrates 262 g (63%); fat: 19 g (11%); cholesterol 140 mg; fiber 25 g

From American Dietetic Association

## Pharmacological Management of Hypertriglyceridemia


#### Table 11. Effects of Nutrition Practices on Triglyceride Lowering

| Nutrition Practice                                      | TG-Lowering Response       | %                                               |                          |
|---------------------------------------------------------|----------------------------|-------------------------------------------------|--------------------------|
| Neight loss (5% to 10% of body weight)                  | 20                         | NIVERS                                          |                          |
| mplement a Mediterranean-style diet vs a<br>ow-fat diet | 10–15                      |                                                 |                          |
| dd marine-derived PUFA (EPA/DHA) (per gram)             | 5–10                       |                                                 |                          |
| Decrease carbohydrates                                  |                            | Table 12.         Effect of Lipid-Lowering      | Therapies on             |
| 1% Energy replacement with MUFA/PUFA                    | 1-2                        | Friglyceride Reduction <sup>504,480a-480d</sup> |                          |
| Eliminate trans fats                                    |                            | Drug                                            | % Triglyceride Reduction |
| 1% Energy replacement with MUFA/PUFA                    | 1                          | sidg                                            | 70 Trigiyeenae nedaetion |
| TG indicates triglyceride; PUFA, polyunsaturated        | a ratty dora, Erri, 010000 | ibrates                                         | 30-50                    |
| aenoic acid; DHA, docosahexaenoic acid; and M<br>acid.  | UFA, monounsaturated       | mmediate-release niacin                         | 20–50                    |
| — N.Л.                                                  |                            | Dmega-3                                         | 20-50                    |
|                                                         |                            | Extended-release niacin                         | 10-30                    |
|                                                         | 9                          | Statins                                         | 10–30                    |
|                                                         | I                          | zetimibe                                        | 5–10                     |

<u>Circulation.</u> 2011 May 24;123(20):2292-333. Epub 2011 Apr 18.

## On the Horizon: alipogene tiparvovec

- Alipogene tiparvovec:
  - Contains coding sequence for LPL<sup>S447X</sup>, a naturally occurring gain of function variant of LPL
- Open label trial for 14 weeks
  - Administered IM x1
- 5 subjects



Carpentier et al. J Clin Endocrinol Metab. 2012 Mar 21. [Epub ahead of print]

## References

- Berkeley HeartLab. Apolipoprotein E Genotype for Cardiovascular Disease Management.
- Carpentier et al. <u>J Clin Endocrinol Metab.</u> 2012 Mar 21. [Epub ahead of print].
- Circulation. 2011 May 24;123(20):2292-333. Epub 2011 Apr 18.
- Fuleihan and Juppner. UpToDate. Parathyroid hormone assays and their clinic use.
- Glendenning et al. <u>Clin Chem.</u> 2002 Mar;48(3):566-7.
- Meany et al. <u>Clin Chem.</u> 2009 Sep;55(9):1737-9.
- Rodgers and Lew. Endocr Pract. 2011 Mar-Apr;17 Suppl 1:2-6.
- Schiller et al. <u>Nephrol Dial Transplant.</u> 2009 Jul;24(7):2240-3.
- Sippel et al. <u>Surgery.</u> 2004 Dec;136(6):1138-42.