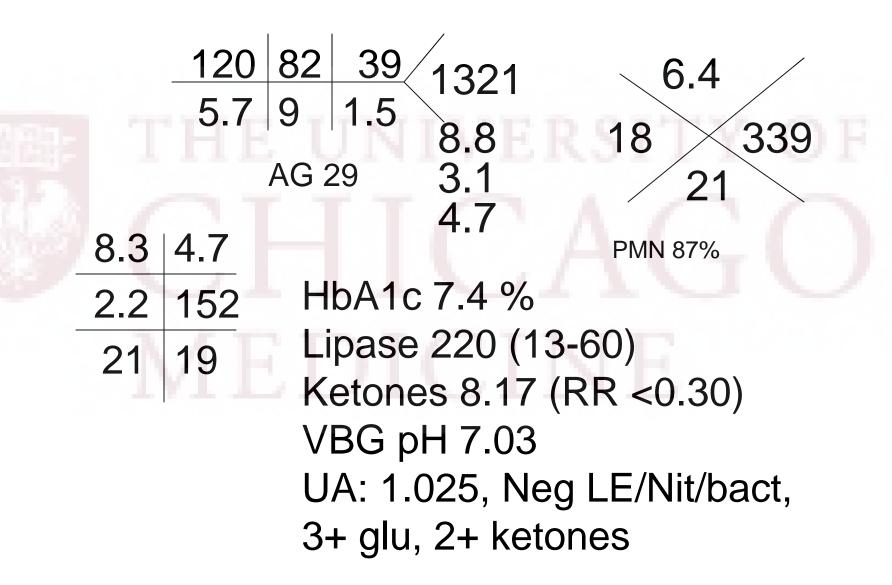
39 year old F with sickle cell anemia presenting with pain crisis

Jess Hwang 11/8/12

HPI


- Knee and back pain typical of usual crises
- Nausea and vomiting 2 days prior to admission
- Had previously been on Lantus 15U daily that had been started in 2011
- Did not use Lantus for 2 days
- Not checking blood sugars at home

SH PMH Sickle cell anemia No tobacco, etoh Lives with 18 yo daughter PE/DVT CVA x 2 MEDS Asthma DM Albuterol, T#4, Dilaudid, Lantus 15U qHS, Lisinopril 2.5 mg, PSH Gabapentin 300mg qHS, Cholecystectomy Folic acid, Paxil 20mg qday, Coumadin, FH Oramorph SCT parents, daughter

Physical Exam

- Vitals: 36.4, 107/66, 90, 16, BMI 21, 95%RA Gen: somnolent, appears in pain
- CV: flow murmur
- Pulm: clear bilaterally
- GI: active emesis, soft, no rebounding or guaring
- Neuro: unable to assess orientation
- Skin: no rash

Initial Labs

- Anti-GAD Ab 45 (RR < 0.02)
- C-peptide 0.04, Glucose 214
- Fructosamine 403 mcmol/L (RR 200-285)

MEDICINE

Fructosamine HbA1c chart

Fructosamine (µmol)	HbA1c %	HbA1c IFCC (mmol/mol)	
200	5	31	
258	6	42	
288	6.5	48	
317	7	53	
346	7.5	58	
375	8	64	
435	9	75	
494	10	86	
552	11	97	
611	12	108	

HbA1c = 0.017 x Fructosamine + 1.61. In our patient, calculated HbA1c = 8.5

Diabetes Care 26:163–167, 2003

Clinical Questions

- Incidence of diabetes in SCD/SCT?
- Glucose metabolism/insulin secretion in SCD?
- Prevalence of diabetes-related autoantibodies in SCD?
- Assessing glycemic control in SCD/SCT?

Incidence of DM in SCD

- Concurrent sickle cell disease with diabetes is rare
- Type 1 Diabetes and sickle cell is even more rare
- Previous case reports were not associated with any diabetes complications

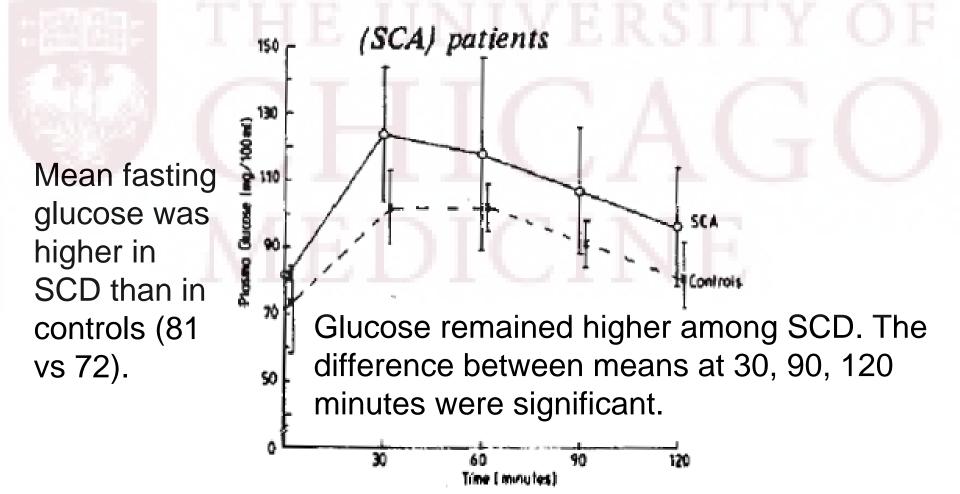
Reason for this uncommon association

- Previously patients with sickle cell anemia died younger so never manifested complications from diabetes
- Genetics?
 - No known association between inheritance patterns of diabetes and sickle cell hemoglobinopathies
 - Beta-globin and insulin genes are both on the short arm of chromosome 11

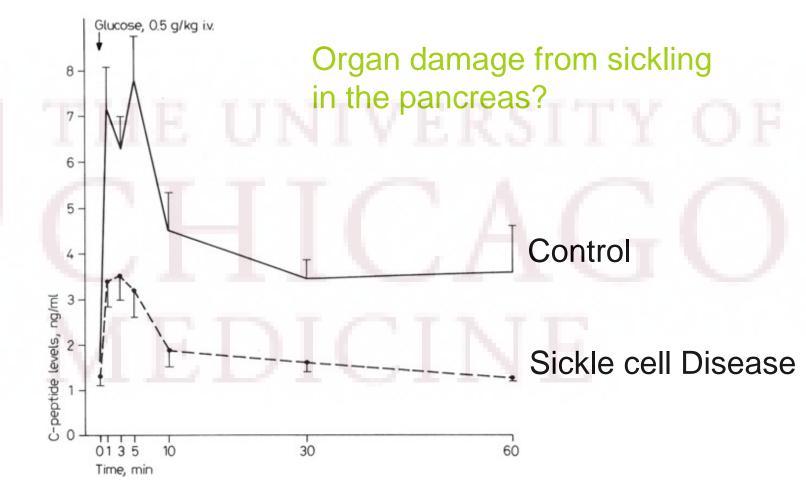
Prevalence of SCD + DM

- 185 total pregnant patients with hemoglobinopathy (123 SCT, 35 HbSS, 20 HbSC, 7 HbS-Thal)
- 2263 controls
 - 4% abnormal screening
- Screening at 28-30 weeks with 2h post-prandial glucose
- None of pregnant patients with sickle cell hemoglobinopathies demonstrated evidence of glucose intolerance

2h post-prandial plasma glucose


Hemoglobin	Early gestation (8-20 weeks)			Late gestation (28-32 weeks)		
	No. of pa- tients	Range (mg/dl)	Mean (mg/dl)	No. of pa- tients	Range (mg/dl)	Mean (mg/dl)
HbA-S	123	69-139	92.8 ± 12.2	64	60-128	90.1 ± 16.7
HbS-S	35	62-142	96.8 ± 10.6	35	68-136	92.5 ± 18.1
HbS-C	20	70-136	89.2 ± 15.2	20	$64 - 168^a$	93.5 ± 21.6
HbS-Thal	7	59-121	86.8 ± 16.8	7	56-132	88.6 ± 19.2
Control ^b	2263	64-197	104 ± 21.6	2263	68-322	107 ± 22.0

Controls: 14 had an abnormal early screening. 73 had an abnormal late screening.


Test group: no abnormal screenings early or late.

OGTT in SCD

12 kids with SCD, 9 controls

C-peptide secretion in SCD

Serum c-peptide levels at 0, 1, 3, 5, 10, 30, 60 minutes after glucose infusion

Acta Haemat 1989;82:81-84

Sickle Cell Trait and DM

- These conditions co-exist in >1 million worldwide
- In the US in 2008 the prevalence of diabetes and HbC or HbS trait was about 350,000.
- No evidence that SCT affects course of DM

Diabetes-related autoantibody Prevalence

- Prospective screening for hyperglycemia in pediatric ED
 - 30 hyperglycemic patients
 - 30 stress control subjects
 - 30 healthy controls
- 3.8% (35 of 926) ED patients were hyperglycemic. Mean glucose 192 mg/dL.
- Tested for ICA, IAA, GAD, HLA typing
- Results: After 30-36 months of follow-up no patients or controls developed diabetes. 4 of 8 patients with SCD had insulin autoantibodies compared with 0 of 52 ED patients without SCD.

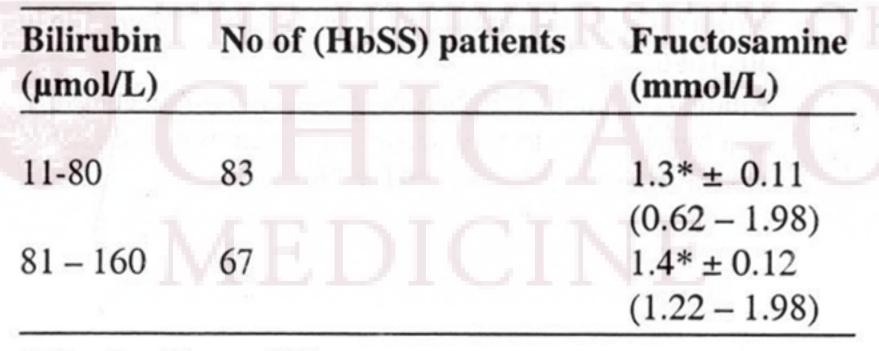
Arch Ped Adolesc Med 1996;150:936-941.

Assessing glycemic control in SCD

- RBC life span is about 10-14 days
- HbA1c does not accurately represent glycemic control
- Fructosamine- avg blood glucose over a period of 2-3 weeks
- Both SCD and DM are associated with renal impairment and retinopathy
- Ketoacidosis and the associated dehydration can precipitate sickle cell crisis

Fructosamine study

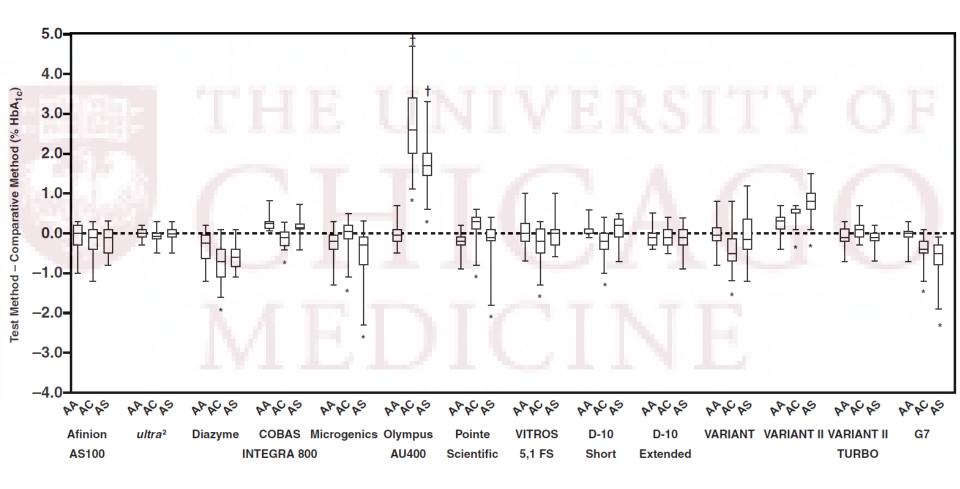
- 150 patients with sickle cell disease
- 100 controls- non-diabetic
- 50 type 2 diabetics
- Mean glucose/fructosamine
 - SCD: 4.3 mmol/L (77 mg/dL)– 1.3 mmol/L
 - Controls: 4.6 mmol/L (83 mg/dL)- 3.2 mmol/L
 - T2DM: 18.2 mmol/L (328 mg/dL)- 1.4 mmol/L

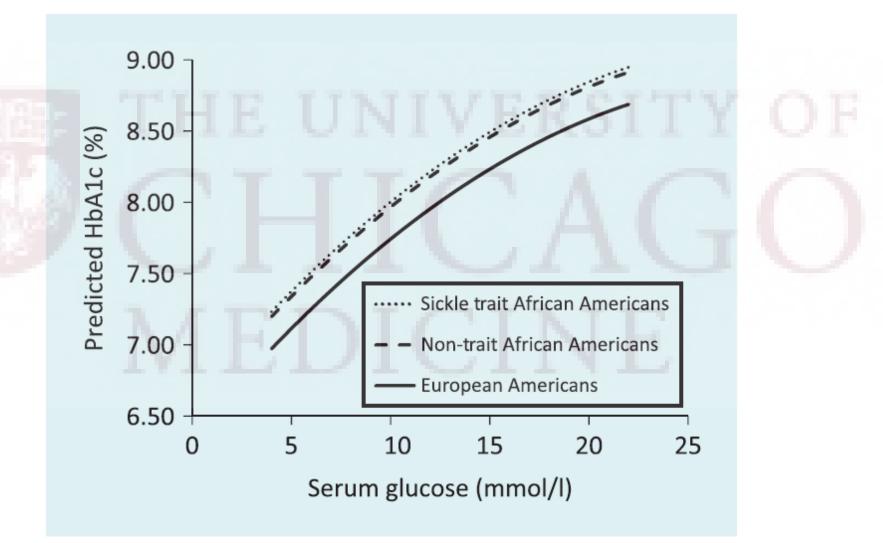

Table i: Serum fructosamine, fasting glucose ,albumin and total bilirubin (Mean ± SEM and Range) in HbSS patients, Diabetics and Controls.

- and - abo	HbSS Patients n = 150	Diabetics n = 50	$\begin{array}{r} \text{Controls} \\ n = 100 \end{array}$	OF
Fructosamine	1.3 ± 0.16	$3.2* \pm .16$	1.4 ± 0.04	3
(mmol/L)	(0.7-1.9)	(1.0-5.2)	(0.6 - 2.2)	
Glucose	4.3 ± 0.07	$18.2* \pm 0.01$	4.6 ± 0.07	
mmol/L	(2.5-6.1)	(4.0-32.4)	(2.0 - 7.2)	
Albumin	40.0 ± 0.47	38 ± 0.58	38 ± 0.38	
g/L	(28-52)	(29 - 45)	(30 - 45)	
Total Bilirubin	$43^{*} \pm 1.7$	14 ± 0.5	15 ± 0.9	
µmol/L	(0-85)	(0-17)	(0-17)	

* Significant difference (P < 0.05)

•Nigerian Postgraduate Medical Journal June 2006; 13(2):95-98.


Table ii: Serum fructosamine(Mean ± SEM and Range) at different levels of serum total bilirubin concentrations in HbSS patients.


* No significant difference (P > 0.05)

•Nigerian Postgraduate Medical Journal June 2006; 13(2):95-98.

Effect of SCT on HbA1c?

Effect of SCT on HbA1c?

Take home points

- Concurrent Sickle cell anemia and Diabetes is very rare
- Need more studies looking into insulin secretion, autoantibodies in SCD
- HbA1c is not reliable in sickle cell anemia but can be used in sickle cell trait
- Fructosamine is a better measure of glycemic control in sickle cell anemia

References

- Morrison JC et al. Prevalence of DM in SC Hemoglobinopathies. JCEM 1979;48(2):192-195.
- Mohapatra MK. T1DM in Homozygous Sickle Cell Anemia. JAPI 2005;53:895-896.
- Rodriguez LR et al. Concurrent MM, SCD and DM: A Case Report. Rev Hem Mex 2012;13(1):36-38.
- Bleyer AJ et al. Impact of SCT on HbA1c in DM. Diab Med 2010:1012-1016.
- Bleyer AJ et al. SCT and Development of Microvascular Complications in DM. Clin J Am Soc Neph 2010;5:1015-1020.
- Little RR et al. Review of Variant Hemoglobins Interfering with HbA1c Measurement. J Diab Sci Tech 2009;3(3):446-451.
- Mongia SK et al. Effects of HbC and HbS Traits on Results of 14 Commercial HbA1c Assays. Am J Clin Path 2008;130:136-140.
- Youssef D et al. Fructosamine- An Underutilized Tool in Diabetes Management: Case Report and Literature Review. Tenn Med 2008;101(11):31-33.
- Yahaya IA et al. Serum Fructosamine in the Assessment of Glycaemic Status in Patients with Sickle Cell Anaemia. Nigerian Postgraduate Medical Journal June 2006; 13(2):95-98.
- Reid et al. Concurrent SCD and DM. Trop and Geo Med 1988;40:201-204.
- Miodovnik M et al. Pregnancy Associated w/Both IDDM and SCD. J Reprod Med 1987;32(4):317-319.