

THE UNIVERSITY OF CHICAGO MEDICINE & BIOLOGICAL SCIENCES

"A 65 year old male with fatigue"

Rachel Umans, MD

Adult and Pediatric Endocrinology Fellow

Dr. Umans does not have any relevant financial relationships with any commercial interests.

Learning Objectives

- Discuss the presentation of subacute adrenal insufficiency
- Discuss the endocrine effects of immune checkpoint therapies

Initial Presentation

- A 65 year old man presents to endocrinology clinic with severe fatigue for several months duration
- History of a recurrent GEJ adenocarcinoma treated with irinotecan, 5 FU, and nivolumab
- After 6 months of therapy, he developed intractable fatigue

First visit

Physical Exam

 BP:
 (!) 121/47

 Pulse:
 (!) 50

 Temp:
 36 °C (96.8 °F)

 TempSrc:
 Tympanic

 Weight:
 75.8 kg (167 lb 3.2 oz)

 Height:
 175.3 cm (5' 9")

General- no acute distress

HEENT- normocephalic, moist mucous

membranes, pupils equal reactive

Card- RRR, no murmurs

Resp- clear to auscultation bilaterally

Abd- soft, nontender

MSK- no edema, no deformity

Integumentary- tinea versicolor, no

increased pigmentation

Neuro- AAOx3, no focal deficit

What etiologies are you considering? What would you

order?

ROS

General: fatigue, weight loss, anorexia, decreased activity HEENT: +visual disturbance increase floaters Resp: –SOB, - chest tightness Card: -palpitation, - chest pain, -LE edema Abd: + abdominal bloating, +diarrhea GU: -dysuria, -hematuria End: - heat or cold intolerance, - polyuria, polydipsia MSK: + loss of muscle mass Neuro: +lightheadedness, -syncope

• PMH

HTN OSA BPH

GE junction adenocarcinoma (initial surgical resection 2020)

Laboratory Assessment

ACTH5.0 - 52.0 pg/mL	<3.0 (L)
ALDOSTERONE	Rpt
Cortisolug/dL	0.3
FSHmIU/mL	28.3
LHmIU/mL	11.8
RENIN	Rpt
Te Binding Globulin 10 - 80 nmol/L	65
Calculated Free Testosteronepg/m L	84
Total Testosterone180 - 800 ng/dL	395
IGF1 LC MS	Rpt

Glucose, Ser/Plasma	73
Sodium	141
Potassium	4.8
Chloride	108
Carbon Dioxide	23
Anion Gap	10
BUN	17
Creatinine	0.86
eGFR, All	96
Calcium	9.2

Aldosterone <=21 ng/dL	<4.0		
Renin ng/mL/h	1.4	v 0	F
IGF1 LC MS 33 - 220 ng/mL IGF1 Z SCORE	86 -0.67	6	5
-2.0 - 2.0 SD Triiodothyronine Free230 - 420 p		242	/
Thyroxine, Free - 1.70 ng/dL	0.90	0.97	
Thyroid Stimulat Hormone (TSH) - 4.00 uIU/mL	-	2.39	

Follow Up

- The patient was started on hydrocortisone 20 mg in the morning and 10 mg in the afternoon
- After three days of therapy he reported a return to his baseline, went on a 27 mile bike ride
- Over the course of the ensuing weeks he reduced his dose of hydrocortisone to 10mg in the morning and 5 mg in the afternoon

Endocrine Effects of Immune Checkpoint Inhibitors (ICIs)

THE UNIVERSITY OF **CHICAGO** MEDICINE &

BIOLOGICAL SCIENCES

Pituitary gland

Hypophysitis

Corticotropin (ACTH) decrease

Secondary adrenal insufficiency^a

Thyroid gland

Hyperthyroidism

Hypothyroidism

TSH increase or decrease

Thyroiditis

Free thyroxine increase or decrease

Autoimmune thyroiditis

Adrenal glands

Primary adrenal insufficiency^b

Diabetes mellitus

Mechanism of Action

Mechanism of Action cont'd

American Association of Clinical Endocrinology Disease State Clinical Review: Evaluation and Management of Immune Checkpoint Inhibitor-Mediated Endocrinopathies: A Practical Case-Based Clinical Approach

 Kevin C.J. Yuen, MD 2 ¹ ⊠ · Susan L. Samson, MD, PhD ² · Irina Bancos, MD ³ · ... · Sina Jasim, MD, MPH ⁶ · Leslie A. Fecher, MD ⁷ · Jeffrey S. Weber, MD, PhD ⁸... Show more

Frequency of Endocrinopathies

Onset of Endocrinopathies

Onset after ICI initiation (weeks)

Hypophysitis/Hypopituitarism

- CTLA-4 more often causes hypophysitis with pituitary enlargement and multiple hormones affected. PD-1/PDL-1 more often causes isolated ACTH deficiency
- ACTH deficiency is most common followed by TSH and gonadotropin deficiency
- DI is rare, prolactin levels are variable
- MRI may be indicated in cases of DI or where there are symptoms of mass effect

Pituitary Axes Affected

Thyroid Dysfunction

- Thyroiditis (with subclinical or overt hypothyroidism or hyperthyroidism)
- Hypothyroidism
- Thyrotoxicosis
- A common presentation, particularly with anti-PD-1 or anti-PD-L1 monotherapy or combination therapy, is destructive thyroiditis with transient thyrotoxicosis, followed by hypothyroidism, although de novo hypothyroidism and Graves disease have also been reported

Diabetes Mellitus

- Most common in PD-1 therapies, occurs in <1% of patients
- Likely genetic predisposition plays a role (HLA genotypes and preexisting pancreatic antibodies are risk factors)
- Highly variable timing of onset (median time to onset ~5 months)

CHICINE

Adrenalitis

- Primary AI is much less common than secondary. Most often seen with combination therapy
- Primary AI requires mineralocorticoid supplementation, distinguishing from secondary AI can be challenging
- May also indicate a need for imaging to evaluate for adrenal metastases

Rarer endocrine/metabolic effects

- Hypoparathyroidism
- Cushing disease
- Acquired lipodystrophy
- Elevated lipase, acute pancreatitis \rightarrow Type 3c diabetes

CHICAGC MEDICINE

References

- American Association of Clinical Endocrinology Disease State Clinical Review: Evaluation and Management of Immune Checkpoint Inhibitor-Mediated Endocrinopathies: A Practical Case-Based Clinical Approach Yuen, Kevin C.J. et al. Endocrine Practice, Volume 28, Issue 7, 719 731
- Mario Sznol, Michael A. Postow, Marianne J. Davies, Anna C. Pavlick, Elizabeth R. Plimack, Montaser Shaheen, Colleen Veloski, Caroline Robert, Endocrine-related adverse events associated with immune checkpoint blockade and expert insights on their management, Cancer Treatment Reviews, Volume 58, 2017, <u>https://doi.org/10.1016/j.ctrv.2017.06.002</u>. (<u>https://www.sciencedirect.com/science/article/pii/S0305737217301007</u>)
- Nogueira E, Newsom-Davis T, Morganstein DL. Immunotherapy-induced endocrinopathies: assessment, management and monitoring. Ther Adv Endocrinol Metab. 2019 Dec 25;10:2042018819896182. doi: 10.1177/2042018819896182.
- Iglesias P. Cancer immunotherapy-induced endocrinopathies: Clinical behavior and therapeutic approach. Eur J Intern Med. 2018 Jan;47:6-13. doi: 10.1016/j.ejim.2017.08.019. Epub 2017 Aug 19. PMID: 28826822.
- Wright JJ, Powers AC, Johnson DB. Endocrine toxicities of immune checkpoint inhibitors. Nat Rev Endocrinol. 2021 Jul;17(7):389-399. doi: 10.1038/s41574-021-00484-3. Epub 2021 Apr 19. PMID: 33875857; PMCID: PMC8769055.
- Byun DJ, Wolchok JD, Rosenberg LM, Girotra M. Cancer immunotherapy immune checkpoint blockade and associated endocrinopathies. Nat Rev Endocrinol. 2017 Apr;13(4):195-207. doi: 10.1038/nrendo.2016.205.
 Epub 2017 Jan 20. PMID: 28106152; PMCID: PMC5629093.

ENDORAMA

November 7, 2024

Presented by: Fawsia Osman, M.D. AND Rachel Umans, M.D.

To earn CME credit for today's activity, UofC Faculty, Residents, Fellows, and Health Care Professionals, text code:

MUYBOV to: 773-245-0068