

THE UNIVERSITY OF CHICAGO MEDICINE & BIOLOGICAL SCIENCES

UNIVERSITY OF

"34 Year Old Man With A Pancreatic Neuroendocrine Tumor"

Dr. Darji does not have any relevant financial relationships with any commercial interests.

ENDORAMA: 34 Year Old Man With A Pancreatic Neuroendocrine Tumor

Monika Darji

November 29th, 2018

Objectives

- Discuss the classification and diagnostic evaluation of pancreatic neuroendocrine tumors
- Review the systemic therapy options for metastatic pancreatic neuroendocrine tumors

MEDICINE

Chief Complaint

34 year old Indian male presents with weight loss and muscle weakness

HPI

- Patient reports the following symptoms over the last 2-3 months:
 - 20 lb weight loss
 - Muscle weakness, loss of muscle mass
 - Lower extremity swelling
 - Increased waist circumference
 - Early satiety
 - Irritability

MEDICINE

Review of Systems

- Constitutional: +weight loss; Negative for fevers, chills, night sweats
- HEENT: +headaches; Negative for blurry vision, sore throat
- Respiratory: +shortness of breath; no cough
- Cardiovascular: Negative for chest pain, palpitations
- Gastrointestinal: +early satiety, bloating, increased waist circumference; denies nausea, vomiting, diarrhea, constipation
- Genitourinary: Negative for urinary frequency, hematuria
- Skin: Negative for diaphoresis, new rash
- Extremities: +LE edema and muscle weakness
- Neurological: Negative for numbness, tingling
- Psychiatric/Behavioral: +irritability; Negative for anxiety, depression

Additional history

- Past Medical History: metastatic pancreatic neuroendocrine tumor with liver mets, diagnosed in 2015
- Past Surgical History: none
- Family History: maternal grandmother had gastric cancer, details unknown
- Social History: internal medicine physician, married with one child, Denies tobacco, alcohol, and illicit drugs

Oncology History

- Patient was diagnosed with metastatic pancreatic neuroendocrine tumor in 5/2015
 - Initially presented with abdominal pain and diarrhea
 - EGD in 6/2015 showed erythematous mucosa in stomach and duodenum
 - CT triphasic of the liver on 7/9/15 showed innumerable arterial enhancing liver lesions and 2 cm mass in the pancreaticoduodenal groove concerning for metastatic pancreatic cancer
 - Liver biopsy on 7/10/15 with pathology confirmed metastatic neuroendocrine carcinoma
 - Two specimens: one had Ki67 5% and other had Ki67 15%
 - Octreotide scan on 7/20/15 showed uptake in pancreas and multiple liver mets
 - He was started on octreotide LAR 7/28/15

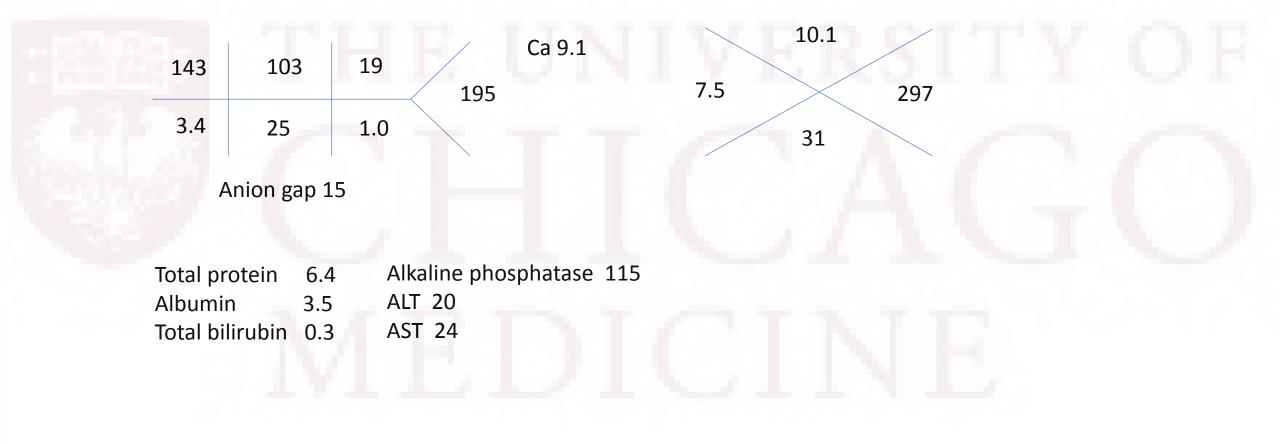
Oncology History


- CT triphasic of the liver 4/2016 showed increase in size and number of liver mets
- Began treatment with a Phase I/II Study of the Combination of Temozolomide and Pazopanib in 5/2016
 - Underwent two cycles of treatment
 - Continued to have disease progression
- Underwent hepatic arterial embolization in 9/2016 and 10/2016.
 - Subsequent MRI in 11/2016 showed mixed response in the liver
- He went to Basel, Switzerland for PRRT (peptide receptor radionuclide therapy, usually targeted to somatostatin receptors) in 3/2017

Oncology History

- Pt developed hypercalcemia in 4/2017, PTHrP level elevated -> was treated with denosumab
- Gastrin level elevated -> started on pantoprazole
- Pt underwent 4 rounds of hepatic arterial embolization and PRRT
- Most recent MRI in 7/2018 shows progression of two hepatic lesions
 - Oncology planning another round of hepatic arterial embolization and PRRT
- Genetic testing negative for MEN syndrome

Additional history


- Meds: pantoprazole 40mg daily, sandostatin LAR every month, potassium chloride 60mEq daily
- Allergies: amoxicillin (hives)

Physical Exam

- Vitals: 59 kg, BMI 19, Temp 97.2, HR 83, RR 19, **BP 154/105**, SpO2 100%
- Constitutional: no acute distress
- HEENT: EOMI, oropharynx clear
- Neck: **buffalo hump**; supple, no thyromegaly
- Cardiovascular: regular rate and rhythm
- Pulmonary/Chest: good respiratory effort, clear to auscultation bilaterally
- Abdomen: central adiposity, mildly tender to palpation, no guarding
- Extremities: 2+ bilateral lower extremity edema
- Neurological: alert, oriented, 4/5 muscle strength in all four extremities
- Skin: warm, dry, purple striae on abdomen
- Psychiatric: not agitated

Admission Labs

Previous labs

- In 4/2017:
 - Gastrin 9840 pg/mL
 - Calcium 11.1, normal albumin, PTHrP 63
 - Potassium 2.4
 - Cortisol 94 μg/dL
 - ACTH 882 pg/mL
 - 24 hour urine cortisol 1017 mcg/24 hr

Cushing's Syndrome

- Pt presented with symptoms and physical exam findings c/w Cushing's
 - Also p/w hypertension, hyperglycemia, hypokalemia
 - 24 hour urine cortisol elevated
 - ACTH elevated
- Cushing's syndrome thought to be 2/2 ectopic ACTH secretion
- Pt was treated with potassium chloride supplementation, eplerenone, and mifepristone
- Given severe and persistent symptoms, pt was referred for bilateral adrenalectomy

Pancreatic Neuroendocrine Tumor (PNET)

- Defined as a rare neoplasm in the endocrine tissue of the pancreas
- Estimated 50-75% are nonfunctioning
- PNETs are classified according to their histologic features
 - Measures of proliferative index, Ki-67 and mitotic index, are used to assign histologic grade
- Pancreatic neuroendocrine carcinoma (NEC) describes cases with poorly differentiated histology and a high proliferative rate

PNET classification

2017 World Health Organization (WHO) classification and grading of pancreatic neuroendocrine neoplasms (PanNENs)

Classification/grade	Ki-67 proliferation index* (percent)	Mitotic index*	
Well-differentiated PanNENs: Pancreatic neuroendoc	rine tumours (PanNETs)		
PanNET G1	<3	<2	
PanNET G2	3 to 20	2 to 20	
PanNET G3	>20	>20	
Poorly differentiated PanNENs: Pancreatic neuroendo	ocrine carcinomas (PanNECs)		
PanNEC (G3)	>20	>20	
Small cell type			
Large cell type			
Mixed neuroendocrine-non-neuroendocrine neoplasn	n		

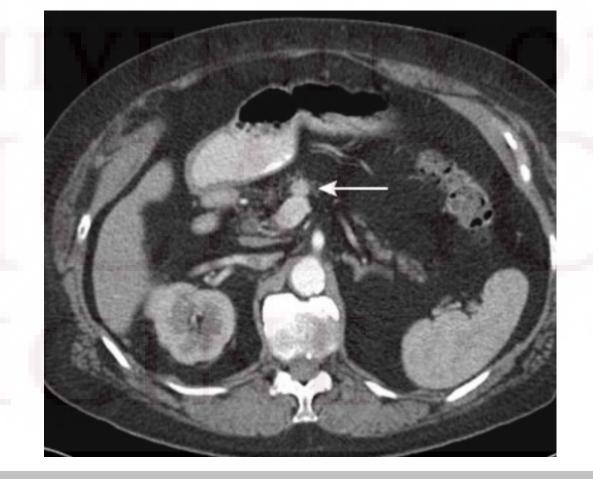
Functional PNETs

- Classified according to the predominant hormone secreted
 - Insulinoma
 - Gastrinoma
 - Glucagonoma
 - Somatostatinoma
 - VIPoma
- Most functioning PNETs have well-differentiated histology

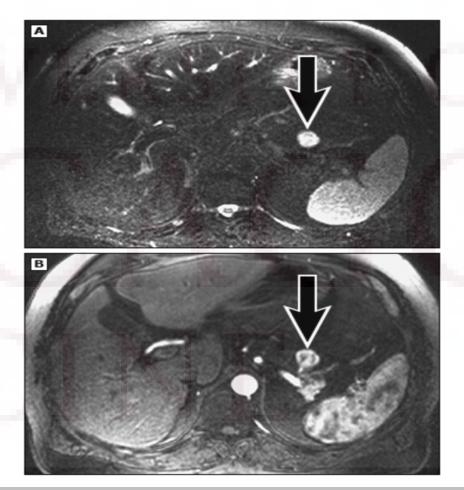
PNET

- Incidence is ≤1 case per 100,000 individuals per year
 - 1 to 2 percent of all pancreatic tumors
- Can occur at any age, most often manifests during the fourth to sixth decades of life
- Sporadic vs hereditary
 - Most cases are sporadic
 - Can be associated with multiple endocrine neoplasia type I (MEN1), von Hippel Lindau (VHL) syndrome, neurofibromatosis type I (NF1), and tuberous sclerosis

Clinical Presentation


Name	Biologically active peptide(s)	Most common symptoms/signs	
Most common syndromes	0141	Y LUN	
Insulinoma	Insulin	Hypoglycemic syndromes (Whipple's triad)	
Zollinger-Ellison syndrome	Gastrin	Abdominal pain, gastroesophageal reflux, diarrhea, duodenal ulcers, PUD/GERD	
Less common syndrome <mark>s (</mark> additio	nal, rarer syndromes also exist)		
VIPoma (Verner-Morrison syndrome, pancreatic cholera, WDHA syndrome)	Vasoactive intestinal peptide	Diarrhea, hypokalemia, dehydration	
Glucagonoma	Glucagon	Rash, glucose intolerance, necrolytic migratory erythema, weight loss	
Somatostatinoma	Somatostatin	Diabetes mellitus, cholelithiasis, diarrhea	
ACTHoma/Cushing's syndrome	АСТН	Cushing's syndrome	
Pancreatic NET causing carcinoid syndrome	Serotonin	Flushing, diarrhea	
PTHrp-oma (hypercalcemia)	calcemia) PTHrp, others unknown Symptoms due to hypercalcemia (mimics primary hyperparathyroidism)		

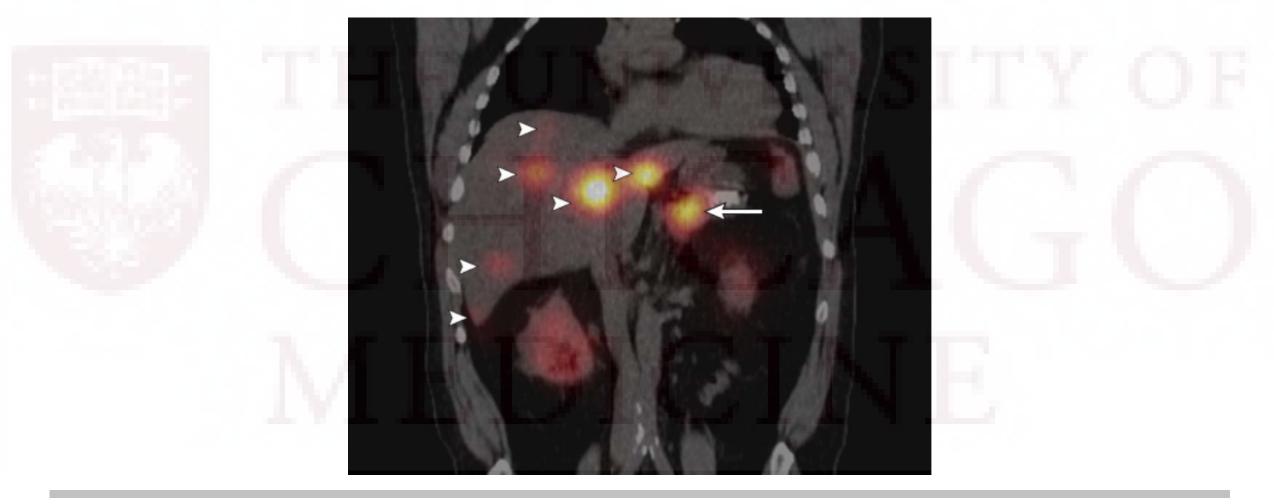
Clinical Presentation


- Nonfunctioning PNETs
 - Tends to present later in disease with symptoms of local compression or metastatic disease
 - Symptoms may include abdominal pain, weight loss, anorexia, nausea, obstructive jaundice
 - Can develop into functional PNET later in disease course
 - Can secrete substances like chromogranins, pancreatic polypeptide, and ghrelin
- Metastatic PNETs
 - Estimated between 32 and 73 percent of cases are metastatic at diagnosis
 - Most common site of metastases is the liver

- Helical (spiral) multiphasic contrast-enhanced CT
 - Sensitivity >80% for detecting primary pancreatic NETs
 - Tumors as small as 4 mm can be visualized with CT scan

• MRI

- Low signal intensity on T1-weighted images
- High signal intensity on T2-weighted images
- Dromain et al.
 - Prospective study
 - The number of detected hepatic metastases was significantly higher with MRI than with CT



- In cases with suspected PNET but lack of evidence on CT scan or MRI, endoscopic ultrasonography or arterial stimulation with venous sampling can be used
- Endoscopic ultrasonography (EUS)
 - High-resolution imaging of the pancreas
 - Can detect lesions as small as 2 to 3 mm in diameter
 - EUS-guided fine-needle aspiration biopsy is an option
- Arterial stimulation with hepatic venous sampling
 - Involves injection of a stimulating secretagogue (secretin for gastrinomas and calcium gluconate for insulinomas) into arteries supplying the pancreas and subsequent sampling of the hepatic venous effluent
- Transhepatic portal venous sampling small peripancreatic veins are accessed and tested for levels of hormones

Indium-111 pentetreotide (OctreoScan)

- Many PNETs express high levels of somatostatin receptors
 - Can be imaged with a radiolabeled form of the octreotide (111-In pentetreotide)
 - Uptake of radiolabeled octreotide can help predict response to treatment with somatostatin analogs and peptide receptor radionuclide therapy; it can also help identify primary tumor site
- 111-In pentetreotide
 - Effective for detecting gastrinomas, glucagonomas, and nonfunctioning pancreatic tumors
 - Not as effective in detecting insulinomas or poorly differentiated NETs as they express low somatostatin receptor levels

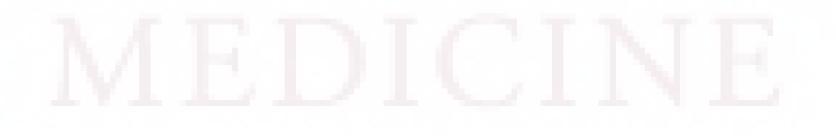
OctreoScan

Functional PET imaging

- PET tracers such as 68-Ga DOTATATE with high-resolution PET scan for functional imaging
 - Provide higher spatial resolution than 111-In pentetreotide
 - Associated with improved sensitivity for detection of small lesions
- Sadowski et al.
 - Prospective study, 131 patients
 - 68-Ga DOTATATE PET detected lesions in 65.2% of patients, 40% of which were detected neither by anatomic imaging nor by (111)In-pentetreotide SPECT/CT.

- Nonfunctioning
 - Chromogranin A is the most commonly secreted tumor marker associated with all types of PNETs
 - Levels are elevated in an estimated 50 to 70 percent of patients with nonfunctioning PNETs
 - Levels are thought to correlate with tumor burden
- Functioning
 - Levels of the secreted hormone are monitored

Surgery

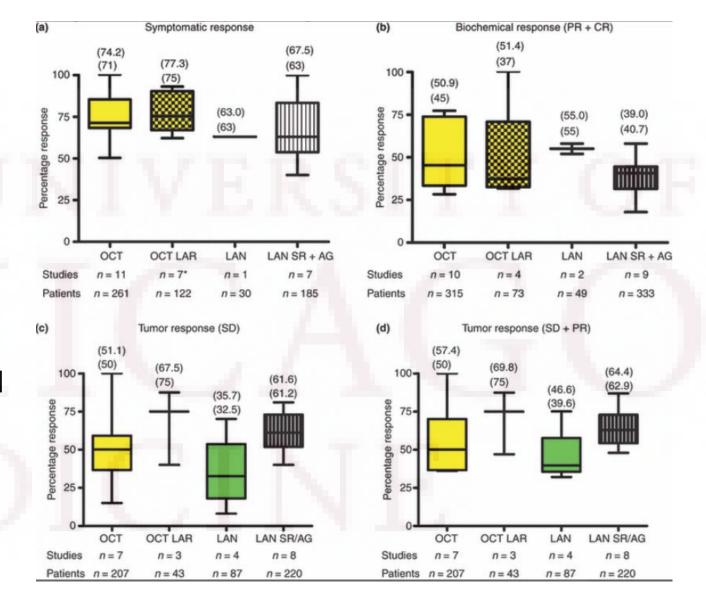

- Indicated in patients with PNETs to alleviate symptoms due to hormone overproduction or compression due to local mass effect
- Surgical resection is indicated in patients with malignant, sporadic PNET
 - With no evidence of distant metastatic spread of disease for curative intent
 - With potentially resectable metastatic disease
- In patients with low-volume metastatic well-differentiated low-grade tumors, resection of metastatic sites in conjunction with adjuvant therapies
- In patients with well-differentiated tumors with high-volume metastatic disease and a rapid growth rate, medical therapy is recommended
 - Palliative debulking may be indicated for relief of local symptoms or systemic symptoms related to hormone production

Initial treatment

- For patients with symptoms of hormone hypersecretion from a welldifferentiated PNET, management includes somatostatin analogs and other agents based on the specific syndrome
 - Initial treatment of insulinomas include carbohydrates and diazoxide to directly inhibit the release of insulin from insulinoma cells
 - Everolimus can also be effective in improving glycemic control in patients with insulinoma
 - Gastrinoma treatment is high doses of oral PPIs
 - Somatostatin analogs may be effective for refractory cases

Systemic therapy options for metastatic welldifferentiated PNET

- For patients with unresectable disease:
 - Somatostatin analogs
 - Cytotoxic therapies
 - TK inhibitors or mTOR inhibitors
 - Peptide receptor radioligand therapy



Somatostatin analogs

- Somatostatin and analogs of somatostatin like octreotide act by binding to somatostatin receptors (SSTR) to inhibit the secretion of a broad range of hormones
 - SSTRs are expressed on the majority of PNETs
 - Mediated mainly through SSTR-2 and SSTR-5
 - The presence of SSTR can be determined by diagnostic imaging like the OctreoScan
- Modlin et al. showed over 70% of symptom control with treatment of gastroenteropancreatic neuroendocrine tumors with somatostatin analogues

Modlin et al.

- Systematic review of 15 studies including 481 patients
 - Sandostatin LAR achieved symptomatic relief in 77.3% (61.9-92.8%) and biochemical response in 51.4% (31.5-100%)

Somatostatin analogs

- Symptomatic benefit is dose dependent and differs based on the type of functioning PNET
 - Effective in treating symptoms of VIPomas and glucagonomas
 - Symptom control in insulinomas and gastrinomas is less clear
- Sandostatin LAR depot preparation
- Side effects usually mild
 - Nausea, bloating, loose stools
 - Mild glucose intolerance
 - Gallstones

Cytotoxic therapies

- Consider in patients with advanced PNET and symptoms related to tumor bulk
- Dacarbazine (DTIC) and temozolomide-based regimens
 - Dacarbazine is an alkylating agent
 - Temozolomide is a less toxic analog of dacarbazine
- Streptozocin-based combination therapy
 - Streptozocin is an alkylating agent
 - Combined with fluorouracil and/or doxorubicin
- Oxaliplatin-containing regimens

Cytotoxic therapies

Regimen	Number of patients*	Tumor response rate (%)	Median progression- free survival (months)	Median overall survival (months)	Author; year
ospective studies					
Chlorozotocin	33	30¶	17	18.0	Moertel C; 1992
Fluorouracil + streptozocin	33	45¶	14	16.8	
Doxorubicin + streptozocin	36	69¶	18	26.4	
Dacarbazine (DTIC)	50	34	NR	19.3	Ramanathan R; 2 <mark>001</mark>
Temozolomide + thalidomide	11	45	NR	NR	Kulke M; 2006
Temozolomide + bevacizumab	15	33	14.3	41.7	Chan JA; 2012
Temozolomide + everolimus	40	40	15.4	NR	Chan JA; 2013
Temozolomide + capecitabine	72	33	22.7	not reached	Kunz PL; 2018
Temozolomide	72	28	14.4	38	

Cytotoxic therapies

Regimen	Number of patients*	Tumor response rate (%)	Median progression- free survival (months)	Median overall survival (months)	Author; year
etrospective series					
Steptozocin + doxorubicin + fluorouracil	84 ^Δ	39	18	37	Kouvaraki M; 2004
Temozolomide (diverse regimens)	53	34	13.6	35.3	Kulke M; 2009
Streptozocin + fluorouracil	96	43	19.4	54.8	Dilz LM; 2015
Temozolomide (single agent)	12	8	NR	NR	Ekeblad S; 2007
Temozolomide + capecitabine	30	70	18	NR	Strosberg J; 2011

TK inhibitors and mTOR inhibitors

- Recommended in patients with progressive disease and potentially in patients with newly diagnosed metastatic PNET with high volume disease
- Tyrosine kinase inhibitors
 - Sunitinib
 - Sorafenib and pazopanib
 - Cabozantinib
- Mammalian Target of Rapamycin (mTOR)
 - Everolimus
 - Temsirolimus

TK inhibitors and mTOR inhibitors

Randomized trials of molecularly targeted agents in advanced pancreatic neuroendocrine tumors (NETs)

Agent	Number of patients	Tumor response rate (percent)	Median TTP or PFS (months)	Reference
Sunitinib	86	9	11.4	Raymond et al, 2011
versus				
Placebo	85	0	5.5	
Everolimus	207	5	11	Yao et al, 2011 (RADIANT-3)
versus				
Placebo	203	2	4.6	
Everolimus	75	12	14	Kulke et al, 2015 (Alliance)
versus				
Everolimus + Bevacizumab	75	31	16.7	

PFS: progression-free survival; TTP: time to progression.

Ę

Peptide receptor radioligand therapy (PRRT)

- Treatment option for patients with disease that expresses somatostatin receptors and has progressed on therapy including at least a somatostatin analog
- Uses radiolabeled somatostatin analogs
 - Most frequently used radionuclides yttrium (90Y) and lutetium (177Lu)
 - Differ in terms of emitted particles, particle energy, and tissue penetration
- Clinical trials are being planned no data yet comparing PRRT with other therapeutic agents
- Use of PRRT should be based on the availability of PRRT and patient preference

Hepatic arterial embolization (HAE)

- Serves as alternative to medical therapy alone for symptomatic patients with hepatic-predominant unresectable, metastatic PNET
- Bland embolization, chemoembolization, or radioembolization
- Based on the principle that hepatic tumors receive most of their blood supply from the hepatic artery, while normal hepatocytes receive most of their blood supply from the portal vein

• Kennedy et al., 2015 systematic review

- Reviewed the safety and clinical efficacy and safety of HAE for patients with neuroendocrine liver metastases
- Patients with bland embolization or chemoembolization, objective radiological response rates ranged from 11 to 100%. Median survival duration ranged between 18 to 80 months

Back to our patient

- CT triphasic of the liver 4/2016 showed increase in size and number of liver mets
- Began treatment with a Phase I/II Study of the Combination of Temozolomide and Pazopanib in 5/2016
 - Underwent two cycles of treatment
 - Continued to have disease progression
- Underwent hepatic arterial embolization in 9/2016 and 10/2016.
 - Subsequent MRI in 11/2016 showed mixed response in the liver
- He went to Basel, Switzerland for PRRT (peptide receptor radionuclide therapy, usually targeted to somatostatin receptors) in 3/2017

Back to our patient

- Given severe and persistent symptoms, pt was referred for bilateral adrenalectomy
- Surgery done via retroperitoneal approach given significant hepatomegaly
- Pt started on steroid replacement
- Pathology showed nodular adrenocortical hyperplasia with no evidence of metastatic neuroendocrine carcinoma

Objectives

- Discuss the classification and diagnostic evaluation of pancreatic neuroendocrine tumors
- Review the systemic therapy options for metastatic pancreatic neuroendocrine tumors

MEDICINE

References

- Uptodate, Classification, epidemiology, clinical presentation, localization, and staging of pancreatic neuroendocrine neoplasms
- Uptodate, Metastatic well-differentiated pancreatic neuroendocrine tumors: Systemic therapy options to control tumor growth and symptoms of hormone hypersecretion
- Uptodate, Surgical resection of sporadic pancreatic neuroendocrine tumors
- Kasumova, G. et al., National Rise of Primary Pancreatic Carcinoid Tumors: Comparison to Functional and Nonfunctional Pancreatic Neuroendocrine Tumors. J Am Coll Surg. 2017 Jun;224(6):1057-1064
- Hallet, J. Exploring the rising incidence of neuroendocrine tumors: a population-based analysis of epidemiology, metastatic presentation, and outcomes. Cancer. 2015 Feb 15;121(4):589-97
- Dromain, C. et al. Detection of liver metastases from endocrine tumors: a prospective comparison of somatostatin receptor scintigraphy, computed tomography, and magnetic resonance imaging. J Clin Oncol. 2005 Jan 1;23(1):70-8
- Sadowski, S. et al. Prospective Study of 68Ga-DOTATATE Positron Emission Tomography/Computed Tomography for Detecting Gastro-Entero-Pancreatic Neuroendocrine Tumors and Unknown Primary Sites. J Clin Oncol. 2016 Feb 20;34(6):588-96
- Kunz, P. et al. Consensus guidelines for the management and treatment of neuroendocrine tumors. Pancreas. 2013 May;42(4):557-77
- Modlin, I. et al. Review article: somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine (carcinoid) tumours. Aliment Pharmacol Ther. 2010 Jan 15;31(2):169-88
- Kennedy, A. et al. Role of hepatic intra-arterial therapies in metastatic neuroendocrine tumours (NET): guidelines from the NET-Liver-Metastases Consensus Conference. HPB (Oxford). 2015 Jan;17(1):29-37

THE UNIVERSITY OF CHICAGO MEDICINE & BIOLOGICAL SCIENCES

UNIVERSITY OF

"34 Year Old Man With A Pancreatic Neuroendocrine Tumor"

Dr. Darji does not have any relevant financial relationships with any commercial interests.