44 yo man with hypercalcemia

Katie Stanley, MD August 9, 2012

HPI

- 44 yo M with DM1 and ESRD
- DM1 since age 5
 - Poorly controlled (A1c 9.1), multiple complications, hypoglycemia unawareness
- ESRD on HD since 2007
- Simultaneous kidney-pancreas transplant 7/19/12
- Complicated by intraop SMV thrombosis->transplant pancreatectomy

HPI

- Consult for DM Management
- Transitioned from insulin gtt to SQ on POD #2
- Plan to transition back to insulin pump when mental status more stable
- Transferred back to ICU POD#4 due to HTN, abdominal pain, N/V
- Noted to have Ca 12.3

PMH

- DM1
- Bilateral retinopathy
- ESRD on HD since 2007 now s/p renal txp
- HTN on 5 BP meds at home
- CAD s/p RCA stent 2009
- Diastolic dysfunction
- PVD s/p LLE stent
- Elevated transaminases due to secondary hemosiderosis
- Benign lung nodule

Medications

Home

- Amlopidine 10 mg daily
- Coreg CR 80 mg daily
- Hydralazine 50 mg TID
- Minoxidil 5 mg am, 2.5 mg pm
- Furosemide 20 mg daily
- Fosrenol 1 tab TID
- Lipitor 20 mg qhs
- ASA 81 mg daily
- Plavix 75 mg daily
- Dialyvite daily
- Asmanex prn

Current

- Acyclovir 400 mg BID
- Duonebs q6h
- Coreg 37.5 mg BID
- Amlodipine 10 mg daily
- Ciprofloxacin 400 mg BID
- Flagyl 500 mg q8h
- Vancomycin 1 g q12h
- Bactrim SS 1 tab daily
- Colace 100 mg BID
- Pepcid 20 mg daily
- Cellcept 1000 mg BID
- Prednisone 40 mg daily (taper)
- Prograf 2 mg BID
- Lantus 25 units qam
- Novolog 5 units qac
- Novolog 1:30>150
- Hydralazine 5-10 mg q1-2h prn
- Dilaudid prn

Family and Social History

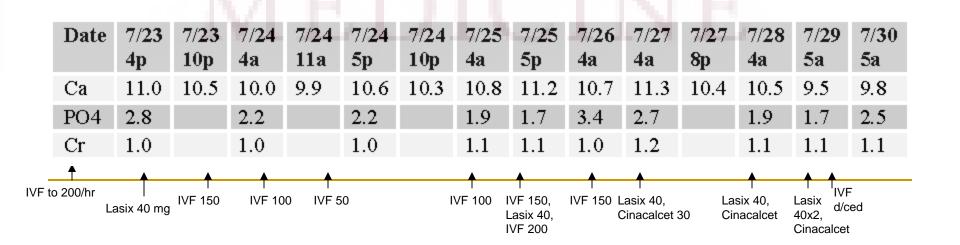
- Family History
 - 15 yo daughter recently dxed with DM1
 - No CKD
 - No known calcium disorders
- Social History
 - □ 10 pack year smoker, quit 2005
 - Rare alcohol, no illicits
 - Divorced, 4 children
 - Former automotive worker

Physical Exam

- Wt 73.1 kg, Ht 175.3 cm
- T 35.7, HR 67-87, BP 165-229/68-105, RR 14-21, SaO2 88-100%
- Constitutional: Lethargic, uncomfortable
- Head: Normocephalic and atraumatic.
- Eyes: Conjunctivae and EOM are normal.
- Neck: Neck supple. No thyromegaly present.
- Cardiovascular: Normal rate and regular rhythm. No murmurs. Mild edema.
- Pulmonary/Chest: Clear to auscultation bilaterally
- Abdominal: JP drain in place with serosanguinous drainage.
 Decreased BS. +distension and tenderness.
- Neurological:
 Somewhat confused, not answering questions appropriately.
- Skin: No rashes.

Differential Diagnosis

- Hyperparathyroidism
- Vitamin D excess
 - Increased calcitriol production
- Resorption of soft tissue calcifications
- Normalization of phosphate
- Resolution of uremia
 - Decreased PTH resistance
- Immobilization
- Malignancy


Labs

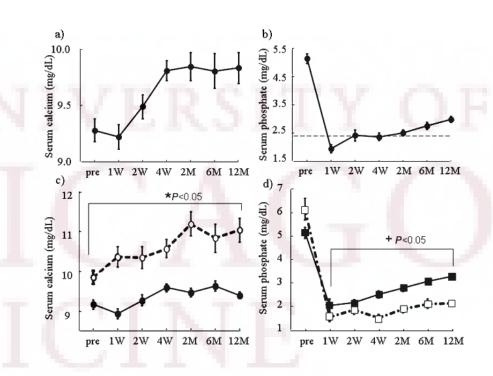
Date	5/2008	12/2009	3/2011	9/2/11	7/17/12	7/19/12	7/20/12	7/21/12	7/22/12	7/23/12
Ca	8.8	9.7	10.7	10.7	10.4	9.5	10.3	10.9	11.4	12.3
PO4	4.1	4.5	4.2	6.0	3.9	5.3	4.0	3.6	3.1	2.1
Cr	6.7	6.9	7.1	6.9	9.0	3.5	2.5	1.7	1.3	1.2

- 7/23/12 PTH 373
- 250HD 24
- **1,250HD 13**

Course

- 0.9NS increased from 83 ml/hr to 200 ml/hr
- Lasix 40 mg IV per nephrology
- Discussed cinacalcet, bisphosphonate
 - Nephrology hesitant to use either initially
- Ultimately started on cinacalcet after unable to wean off IVF

Is furosemide first line for hypercalcemia?


- Furosemide still often recommended but evidence is questionable
- Normalization in 14/39 episodes, 2 quickly
- 40-60 mg/d did not normalize in 12 d
- Monitoring intense
- Electrolyte abnormalities
- IVF + bisphosphonate +/calcitonin

Study, Year (Reference)	Study Design	Patients, n	Monitoring	IV Fluid	Furosemide Dose	Results	
Suki et al., 1970 (1)	Case series 8		Hourly urine output and urinary electrolyte losses	1–2 L normal saline, then hourly	80-100 mg every 1-2 h for 6-47 h	3 normal, 3 near-normal, 2 reduced	
Fillastre et al., 1973 (2)	Case series	11	Arterial pressures and central venous pressure, urinary output, urinary electrolyte losses	Corrected dehydration first	7 patients, 125 mg every 3 h: 4 patients, 100 mg/h	6 normalized in 37 h-7 d, 1 unrelated death	
Helzberg et al., 1983 (3)	Case report	1	Swan-Ganz catheter	Up to 39.5 L/d	160 mg/d IV, without response; 40 mg IV × 2 after massive fluids	Normalization on day 13; could not wear from fluids, died	
Valentine, 1973 (4)	Case report	1	Urinary output and urinary electrolyte losses	Replaced hourly fluid and electrolyte output	80 mg every 2 h for 24 h, then 80 mg/h for 14 h, then 80 mg every 6 h	Normalized in 50 h; also given methylprednisolor 80 mg, every 4 h	
Caron, 1975 (5)	Case report	1	Not stated	Not stated	160 mg over 4 h	Improved calcium, severe electrolyte imbalance, death	
	Case series	3	Not stated	Normal saline, 3.5–8 L/d	40-60 mg/d orally 4-160 mg every 4 h.	Gradual decrease over 12 (none normalized), 1 tetanic crisis from low magnesium	
Baguet et al., Case series 5 1972 (6)		ICU, hourly central venous pressure measurement, weight checked every 6 h	enous pressure then replacement of neasurement, hourly losses veight checked		Only the patient with lowest initial level normalized		
Le Gall et al., 1971 (7)			Urinary output and urinary electrolyte losses 1. L. normal saline, the hourly replacement and 15 mg/h magnesium		60-100 mg IV hourly	Episode 1, patient normalized after 12 h; episodes 2-3, levels improved but did not normalize	
Humbert et al., 1972 (8)			Central venous pressure, urinary output every 3 h, urinary electrolyte losses every 6 h	Normal saline, then replacement of losses	125 mg every 3 h	3 of 6 patients normalized furosemide doses in responders, 625–5000 m	
Najar et al., Case series 3 infants (age 1972 (9) 42) with vitamin D infoxication		Hourly urinary output, urine electrolyte losses every 2–4 h	20 mL/kg, then replacement of hourly losses	20–140 mg: 24 h treatment in 2, 48 h in 1	2 patients improved with rebound after 72 h— re-treated 4 times over 38 d (normalized) and twice in 7 d (not normal 1 normalized with no rebound		

ICU = intensive care unit; IV = intravenous.

Post renal transplant hypercalcemia

- Course of posttransplant course predicted by pretransplant calcium
- Pre-txp PTH 399 in hypercalcemic at 12 mos vs. 204 in normocalcemic

Treatment of post renal transplant hypercalcemia: Cinacalcet

- Journal of Nephrology 2011
 - 17 renal txp pts with hyperCa 2/2 to persistent hyperpara
 58 +/- 35 mos posttxp, serum Ca>10.2, PTH>150, CrCl>40
 - Cinacalcet 30 mg qd, increased to 60 mg in 2 pts
 - Ca 10.5->9.7 1 month->9.4 1 yr
 - PTH 204.79->173.6->148.55
 - □ PO4 2.9->3.4->3.1
 - □ Cr 1.7->1.8->1.5
- Hypophosphatemia?
 - Dialysis patients vs. post-txp patients

Treatment of post renal transplant hypercalcemia-parathyroidectomy

- Long lifespan of parathyroid cells->slow involution
- Interstitial microcalcifications, hypophosphatemia, bone loss
- Lack of proven effect of cinacalcet on bone, expense
- Proposed indications
- Negative effect on renal function?

References

- Block, GA et al. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl Med. 2004: 1516-25.
- Guerra, R et al. Hypercalcemia secondary to persistent hyperparathyroidism in kidney transplant patients: analysis after a year with cinacalcet. *J Nephrol*. 2011: 78-82.
- Kawarazaki, H et al. Natural history of mineral and bone disorders after living-donor kidney transplantation: a one-year prospective observational study. Therapeutic Apheresis and Dialysis. 2011: 481-7.
- LeGrand, S et al. Narrative review: furosemide for hypercalcemia: an unproven yet common practice. Ann Med. 2008: 259-63.
- Morales, E et al. Treatment with calcimimetics in kidney transplantation. Transplantation Reviews. 2010: 79-88.
- Triponez, F et al. Surgical treatment of persistent hyperparathyroidism after renal transplantation. Ann Surg. 2008: 18-30.